ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:255.51KB ,
资源ID:10345983      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10345983.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(九年级上册数学《二次根式》知识点整理.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级上册数学《二次根式》知识点整理.doc

1、 二次根式 一、本节学习指导 学习二次根式时,我们把平方根的知识顺带巩固一下。这就是系统性学习,这样学习的好处是把零碎的知识可以系统起来。本节中我们要对二次根式有意义的条件要掌握。 二、知识要点 1、二次根式的概念:形如(a≥0)的式子叫做二次根式。 注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 2、取值范围 (1)、二次根式有意义的条件:由二次根式的意义

2、可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。 (2)、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。 3、二次根式(a≥0)的非负性 (a≥0)表示a的算术平方根,也就是说,(a≥0)是一个非负数,即0(a≥0)。 注意:因为二次根式(a≥0)表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,

3、b=0。 4、二次根式的性质:(a≥0) 描述为:一个非负数的算术平方根的平方等于这个非负数。 注意:二次根式的性质公式(a≥0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a≥0,则,如:,。 5、二次根式的性质 描述为:一个数的平方的算术平方根等于这个数的绝对值。 注意: (1)、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即; 2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 6、与的异同点 1、不同点

4、与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,(a≥0) ,而 2、相同点:当被开方数都是非负数,即a≥0时,=;a<0时,无意义,而。 7、二次根式的运算 (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类

5、二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. (a≥0,b≥0); (b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 三、经验之谈: 特别要注意这个式子:,这个运算过程是区别于的依据。 本节中还要注意根式的运算,有很多同学错误的以为:,根式的加减法,如果不是同类项的话是不能合并的,比如:,而目前我们只能估算,或是就保持最简因式。 本节中还要记住一些常见根式的约等数,常见的有 一元二次方

6、程解法 一、本节学习指导 一元二次方程的概念比较少,但遇到题目的时候还挺考验经验积累的。所以本节我们要多做练习,多思考,多积累。在中考中这部分知识会和函数等结合,到时候涉及综合知识就比较多,希望同学们能掌握好本节的解题方法。 二、知识要点 1、 降次—直接开平方法(将被开放式看作一个整体) 2、 配方法 步骤:(1)二次项系数化为1 (2)在方程左边同时加上并减去一次项系数一半的平方 (3)化简整理,再用直接开平方法解方程 3、公式法 4、 因式分解法 方法:将

7、式子左边进行因式分解,右边为0 5、十字相乘法(特殊的因式分解) 方法:形如的式子,可化为 三、经验之谈: 有一点我要提醒一下大家,解数学题时很多同学总是想着找简单的方法,浪费了很多时间在“想”上面,就像本节的求根公式很多同学都不愿意实用,因为计算起来实在太麻烦。其实很多“老式”解题步骤的确很繁琐眞就管用。有句话说:“笨鸟先飞嘛”! 图形的旋转 一、本节学习指导 本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。本节有配套免费学习视频。 二、知识要点 1、旋转:

8、将一个图形绕着某点O转动一个角度的变换叫做旋转。其中,O叫做旋转中心,转动的角度叫做旋转角。 2、旋转性质 ① 旋转后的图形与原图形全等 ② 对应线段与O形成的角叫做旋转角 ③ 各旋转角都相等 3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。其中,该直线的方向叫做平移方向,该距离叫做平移距离。 4、平移性质 ① 平移后的图形与原图形全等 ② 两个图形的对应边连线的线段平行相等(等于平行距离) ③ 各组对应线段平行且相等 5、中心对称与中心对称图形 ① 中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或

9、中心对称。其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。 ② 中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。其中,这个点叫做该图形的对称中心。 6、轴对称与轴对称图形 (1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。其中,这条轴叫做对称轴。 注:轴对称的性质:① 两个图形全等;② 对应点连线被对称轴垂直平分 (2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。 7、点的对称变换 (1)、关于原点对称的点的特征 两个点关于原点

10、对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为 P'(-x,-y) (2)、关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y) (3)、关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y) (4)、关于直线y=x对称 两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线 y=x的对称点为P'(y,x) (5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:

11、P(x,y)关于直线y=x的对称点为P'(-y,-x) 注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。 三、经验之谈: 本节中点的对称变换考得相对较多,如果在大脑中百思不得其解的话,我们可以动手作图出来观察。 圆知识点总结 圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。 包括性质定理与判定定理及公式。 一 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合

12、 二 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于 定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都 相等的一条直线 三 位置关系: 1点与圆的位置关系: 点在圆内 dr 点A在圆

13、外 2 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

14、 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中 2个即可推出其它3个结论,即: ①AB是直径 ②AB⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O中,∵AB∥CD

15、 五 圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:①∠AOB=∠DOE ②AB=DE ③OC=OF ④ 六 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB和∠ACB是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧

16、所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O中,∵∠C、∠D都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O中,∵AB是直径 或∵∠C=90° ∴∠C=90° ∴AB是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC中,∵OC=OA=OB ∴△ABC是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在

17、直角三角形中斜边上的中线等于斜边的 一半的逆定理。 七 圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在⊙O中,∵四边形ABCD是内接四边形 ∴∠C+∠BAD=180° B+∠D=180° ∠DAE=∠C 八 切线的性质与判定定理 (1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN⊥OA且MN过半径OA外端 ∴MN是⊙O的切线 (2)性质定理:切线垂直于过切点的半径(如上图)

18、 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心 以上三个定理及推论也称二推一定理: 即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件 ∵MN是切线 ∴MN⊥OA 切线长定理: 从圆外一点引圆的两条切线,它们的切 线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA、PB是的两条切线 ∴PA=PB PO平分∠BPA 九 圆内正多边形的计算 (1)正三角形 在⊙O中 △ABC是正三角形,有关计算在Rt△B

19、OD中进行,OD:BD:OB= (2)正四边形 同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA= (3)正六边形 同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA= 十、圆的有关概念 1、三角形的外接圆、外心。 →用到:线段的垂直平分线及性质 2、三角形的内切圆、内心。 →用到:角的平分线及性质 3、圆的对称性。→ 十一、圆的有关线的长和面积。 1、圆的周长、弧长 C=2r, l= 2、圆的面积、扇形面积、圆锥的侧面积和全面

20、积 S圆=r2 , S扇形= S圆锥= 3、求面积的方法 直接法→由面积公式直接得到 间接法→即:割补法(和差法)→进行等量代换 十二、侧面展开图: ①圆柱侧面展开图是 形,它的长是底面的 ,高是这个圆柱的 ; ②圆锥侧面展开图是 形,它的半径是这个圆锥的 ,它的弧长是这个 圆锥的底面的 。 十三、正多边形计算的解题思路: 正多边形等腰三角形直角三角形。 可将正多边形的中心与一边组成等腰三角形,再用解直角三角形的知识进行求解。 加速度学习网 我的学习也要加速

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服