ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:276.59KB ,
资源ID:10345909      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10345909.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学培训班一对一辅导答题技巧.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学培训班一对一辅导答题技巧.doc

1、高中数学培训班一对一辅导答题技巧  怎么让数学这个科目变成自己的优势呢?其实,高中数学要变成优势并不难。接下来一对一辅导教你如何进行高三复习?   高三的数学教材是人教版,只有54页,好像就一个最基本的导数和统计,不知道大家现在是不是也用的这本书。这个别落下,估计可以拿到8分左右。   这个几十页的教材学完后,就开始复习了。若平时只有三四十分,说明有很多最基本解题思路的都是没有掌握的。如果把这些最基本的答题技巧都掌握了的话,效果肯定会好很多。 高三一对一辅导一般来说,老师会分三轮复习,第一轮是细到每个知识点的复习(我觉得基本上就是快速的讲一轮新课了);第二轮是梳理一遍,整理归纳;第三轮

2、式 选择题 一、易错点归纳: 九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。 针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。 二、答题方法: 选择题十大速解方法: 排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法; 填空题四大速解方法: 直接法、特殊化法、数形结合法、等价转化法。 解答题 专题一、三角变换与三角函数的性质问题 1、解题路线图 ①不同角化同角

3、  ②降幂扩角  ③化f(x)=Asin(ωx+φ)+h  ④结合性质求解。 2、构建答题模板  ①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。  ②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。  ③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。  ④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。 专题二、解三角形问题 1、解题路线图  (1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。  (2) ①用余弦定理表示角;②用基

4、本不等式求范围;③确定角的取值范围。 2、构建答题模板  ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。  ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。  ③求结果。  ④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。 专题三、数列的通项、求和问题 1、解题路线图  ①先求某一项,或者找到数列的关系式。  ②求通项公式。  ③求数列和通式。 2、构建答题模板  ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推

5、公式。  ②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。  ③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。  ④写步骤:规范写出求和步骤。  ⑤再反思:反思回顾,查看关键点、易错点及解题规范。 专题四、利用空间向量求角问题 1、解题路线图  ①建立坐标系,并用坐标来表示向量。  ②空间向量的坐标运算。  ③用向量工具求空间的角和距离。 2、构建答题模板  ①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。  ②写坐标:建立空间直角坐标系,写出特征点坐标。  ③求向量:求直线的方向向量或平面

6、的法向量。  ④求夹角:计算向量的夹角。  ⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。 专题五、圆锥曲线中的范围问题 1、解题路线图  ①设方程。  ②解系数。  ③得结论。 2、构建答题模板  ①提关系:从题设条件中提取不等关系式。  ②找函数:用一个变量表示目标变量,代入不等关系式。  ③得范围:通过求解含目标变量的不等式,得所求参数的范围。  ④再回顾:注意目标变量的范围所受题中其他因素的制约。 专题六、解析几何中的探索性问题 1、解题路线图  ①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)  ②将上面的假设代入已知条件求解。  ③得

7、出结论。 2、构建答题模板  ①先假定:假设结论成立。  ②再推理:以假设结论成立为条件,进行推理求解。  ③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。  ④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。 专题七、离散型随机变量的均值与方差 1、解题路线图  (1)①标记事件;②对事件分解;③计算概率。  (2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。 2、构建答题模板  ①定元:根据已知条件确定离散型随机变量的取值。  ②定性:明确每个随机变量取值所对应的事件。  ③定型:确定事件的概率模型和计算公式。  ④计算:

8、计算随机变量取每一个值的概率。  ⑤列表:列出分布列。  ⑥求解:根据均值、方差公式求解其值。 专题八、函数的单调性、极值、最值问题 1、解题路线图  (1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。  (2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。 2、构建答题模板  ①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)  ②解方程:解f′(x)=0,得方程的根  ③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。  ④得结论:从表格观察f(x)的单调性、极值、最值等。  ⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性 许多孩子希望考试能碰见之前做过的题,或者类似之前做过的题的题,甚至希望数据都不要变,只把小明变成小日或者小月,小花变成小化,新题最好不要出,新题型更不能出,因为一旦出了学员容易觉得晕,推理几步之后就不知身在何处了。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服