ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:217KB ,
资源ID:10345170      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10345170.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(全国中考数学分类解析汇编专题4:概率统计问题.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国中考数学分类解析汇编专题4:概率统计问题.doc

1、2 012年全国中考数学分类解析汇编 专题4:概率统计问题 一、选择题 1. (2012广东肇庆3分)某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是【 】 A.扇形甲的圆心角是72° B.学生的总人数是900人 C.丙地区的人数比乙地区的人数多180人 D.甲地区的人数比丙地区的人数少180人 【答案】D。 【考点】扇形统计图,扇形圆心角的求法,频数、频率和总量的关系。 【分析】A.根据甲区的人数是总人数的,则扇形甲的

2、圆心角是:×360°=72°,故此选项正确,不符合题意; B.学生的总人数是:180÷=900人,故此选项正确,不符合题意; C.丙地区的人数为:900× =450,,乙地区的人数为:900×=270,则丙地区的人数比乙地区的人数多450-270=180人,故此选项正确,不符合题意; D.甲地区的人数比丙地区的人数少270-180=90人,故此选项错误,符合题意。 故选D。 2. (2012江苏淮安3分)下列说法正确的是【 】 A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。 B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生 C、学校气象小组

3、预报明天下雨的概率为0.8,则明天下雨的可能性较大 D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法 【答案】C。 【考点】方差的意义,概率的意义,调查方法的选择。 【分析】根据方差的意义,概率的意义,调查方法的选择逐一作出判断: A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误; B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误; C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确; D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误。 故选C。

4、 3. (2012湖南郴州3分)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的知晓情况,从中随机抽取了100名师生进行问卷调查,这项调查中的样本是【 】 A.2000名师生对“三创”工作的知晓情况 B.从中抽取的100名师生 C.从中抽取的100名师生对“三创“工作的知晓情况 D.100 【答案】C。 【考点】样本。 【分析】样本是总体中抽取的所要考查的元素总称,样本中个体的多少叫样本容量。因此,这项调查中的样本是:从中抽取的100名师生对“三创“工作的知晓情况。故选C。 4. (2012

5、贵州黔南4分)为做好“四帮四促”工作,黔南州某局机关积极倡导“挂帮一日捐”活动。切实帮助贫困村民,在一日捐活动中,全局50名职工积极响应,同时将所捐款情况统计并制成统计图,根据图提供的信息,捐款金额的众数和中位数分别是【 】 A.20,20 B.30,20 C.30,30 D.20,30 【答案】C。 【考点】众数,中位数。 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是30,故这组数据的众数为30。 中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据的中位数是第2

6、5和26名职工捐款金额的平均数,(30+30)÷2=30。 故选C。 5. (2012山东威海3分)向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为【 】 A. B. C. D. 【答案】A。 【考点】正六边形的性质,等边三角形的判定和性质,锐角三角函数定义,特殊角的三角函数值,扇形的计算,几何概率。 【分析】如图,设正六边形的边长为a,则正六边形可由六个与△ABO全等的等边三角形组成,△ABO的边长也为a,高BH=,面积为。正六边形的面积为。 阴影区域的面积为六个扇形(半径为a,圆心角为600)面积减去六个

7、上述等边三角形面积,即。 ∴飞镖插在阴影区域的概率为。故选A。 6. (2012广西玉林、防城港3分)一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于的方程有实数根的概率是【 】 A. B. C. D. 【答案】A。 【考点】画树状图法或列表法,概率,一元二次方程根的判别式。 【分析】画树状图: ∵p、q组成的一元二次方程共有6个:,,,, ,, 其中,,,的根的判别式小于0,方程无

8、实数根, ,的根的判别式大于0,方程有两个不相等的实数根, 的根的判别式等于0,方程有两个相等的实数根, 即满足关于的方程有实数根的情况有3种, ∴满足关于的方程有实数根的概率是。故选A。 7. (2012黑龙江大庆3分)如图所示,将一个圆盘四等分,并把四个区域分别标上I、Ⅱ、Ⅲ、Ⅳ,只有区域I为感应区域,中心角为60°的扇形AOB绕点0转动,在其半径OA上装有带指示灯的感应装置,当扇形AOB与区域I有重叠(原点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB任意转动时,指示灯发光的概率为【 】

9、 A. B C. D. 【答案】D。 【考点】几何概率。 【分析】如图,∵当扇形AOB落在区域I时,指示灯会发光; 当扇形AOB落在区域Ⅱ的∠FOC(∠FOC=60°)内部时,指示灯会发光; 当扇形AOB落在区域Ⅳ的∠DOE(∠DOE=60°)内部时,指示灯会发光, ∴指示灯发光的概率为:。故选D。 二、填空题 1. (2012湖南郴州3分)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写

10、的贺卡的概率是 ▲ . 【答案】。 【考点】概率。 【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。因为纸箱里共有43+7=50张贺卡,老师写的贺卡有7张,所以小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是。 2. (2012湖南怀化3分)某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度 的平均温度是 ▲ . 温度() 26 27 25 天 数 1 3 3 【答案】26。 【考点】加权平均数。 【分析】根据加权平均数的计算公式计算

11、即可: 这7天的最高温度的平均温度是:(26+27×3+25×3)÷7=26。 3. (2012四川广元3分)已知一次函数,其中k从1,-2中随机取一个值,b从-1,2,3 中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为 ▲ 【答案】。 【考点】列表法或树状图法,概率,一次函数图象与系数的关系。 【分析】画树状图得: ∵共有6种等可能的结果, 一次函数的图象经过一、二、三象限时k>0,b>0,有(1,2),(1,3)两点, ∴一次函数的图象经过一、二、三象限的概率为:。 4. (2012甘肃白银4分)在-1,1,2这三个数中任选

12、2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是 ▲ . 【答案】。 【考点】概率,反比例函数的性质。 【分析】画树状图: 识 刻画出来,大致由树状图可知,在-1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,符合要求的点有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),

13、2,1)6种情况,双曲线位于第一、三象限时,>0,只有(1,2),(2,1)符合>0。 ∴该双曲线位于第一、三象限的概率是:。 三、解答题 1. (2012山东济宁8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张. (1)请你用画树形图或列表的方法列举出可能出现的所有结果; (2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率; (3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y

14、表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值. 【答案】解:(1)画树形图如下: 所有出现的结果共有12种。 (2)∵两次抽取的正多边形能构成平面镶嵌的情况有4种:AB,AD,BA,DA, ∴P(两次抽取的正多边形能构成平面镶嵌)=。 (3)当正三角形和正方形构成平面镶嵌时,则有60p+90q=360,即2p+3q=12。 ∵p、q是正整数,∴p=3,q=2。 当正三角形和六边形构成平面镶嵌时,则有60p+120q=360,即p+2q=6。 ∵p、q是正整数,∴p=4,q=1或p=2,q=2。 【考点】列表法和树状图法,概率,多边形内角和定理,平面镶嵌(密铺)。 【分析】(1)列表或画树状图即可得到所有的可能情况。 (2)根据平面镶嵌的定义,能构成平面镶嵌的多边形有正三角形与正方形,正三角形与正六边形,然后根据概率公式列式计算即可得解。 (3)对两种平面镶嵌的情况,根据方程代入数据整理,再根据p、q都是整数解答。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服