ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:271.51KB ,
资源ID:10344897      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10344897.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(八年级数学(人教版上)同步练习第十三章第二节立方根.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学(人教版上)同步练习第十三章第二节立方根.doc

1、2011-2012学年八年级数学(人教版上)同步练习第十三章 第一节 立方根 一、教学内容: 1、立方根的概念、表示、求法 2、用估算的方法求无理数的近似值 3、用计算器进行开方运算 二、教学目标 1、了解立方根的概念,会用根号表示一个数的立方根. 2、能用立方运算求某些数的立方根,了解开立方与立方互为逆运算,了解立方根的性质. 3、能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小。 4、能应用立方根的概念及性质解决实际问题。 三、知识要点分析 1、立方根的概念 (这是重点)如果一个数x的立方等于a,即,那么这个

2、数x就叫做a的立方根。数的立方根记作,这里的“3”是根指数,不能省略.开立方:求一个数a的立方根的运算,叫做开立方.被开立方的数可以是正数、负数、0.开立方运算的结果是立方根. 立方根的性质:每个数都有一个立方根.正数有一个正的立方根;负数有一个负的立方根;0的立方根是0. 两个重要公式: ⑴(a为任意数); ⑵(a为任意数). 2、用估算的方法求无理数的近似值 通过估算检验计算结果的合理性,主要是依据两个公式:⑴;(2)(a为任意数). 估算一个根号表示的无理数所采用的方法可概括为“逐步逼近”.例如要估算的大小,要求精确到小数点后一位.首先找出与43邻近的两个完全平方数,如36

3、<43<49,则___<<___,由此可得的整数部分是____,然后再由6.52=42.25,6.62=43.56,得6.5<<6.6,从而知的一位小数应为5,即≈6.5或6.6. 3、用计算器开方 (这是重、难点)开方运算要用到键“”和键“”。对于开平方运算,按键顺序为:“”,被开方数,“=”;对于开立方运算,按键顺序为:“”,被开方数,“=”。 【典型例题】 考点一:立方根的概念 例1:求下列各数的立方根 (1)2(2)-0.008 (3)-343 (4)0.512 【思路分析】由立方运算求一个数a的立方根,先找出立方等于a的数,写出立方式,再由立方式写出

4、a的立方根的值,并用数学表达式表示开立方的结果。正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。 解:(1)因为2=,()3=,所以2的立方根为,即=。 (2)因为(-0.2)3=-0.008,所以-0.008的立方根为-0.2,即=-0.2。 (3)因为(-7)3=0.343,所以-343的立方根是-7,即=-7。 (4)因为(0.8)3=0.512,所以0.512的立方根是0.8,即=0.8。 方法与规律:不论是正数还是负数都有一个立方根. 考点二:用估算的方法求无理数的近似值 例2: 校园里有旗杆高11米,如果想要在旗杆顶部点A与地面一固定点B之间拉一根

5、直的铁丝,小强已测量固定点B到旗杆底部C的距离是8m,小军已准备好一根长12.3m 的铁丝,你认为这一长度够用吗? 【思路分析】如图,由题意可知,AC=11m,BC=8m,因为旗杆AC垂直于地面,所以 △ABC是直角三角形,由勾股定理可求出AB2的值,用此值与12.32比较大小,即可得出是否够用. 解:由勾股定理得AB2=AC2+BC2=112+82=185.因为12.32=151.29<185, 所以>,因此这一长度不够用. 方法与规律:利用勾股定理解决实际问题是近几年中考的热点问题,往往与求算术平方根相结合,要注意掌握. 例3. 下列估算结果是否正确?为什么? (

6、1)≈6.8;(2)≈20. 【思路分析】 通过估算检验计算结果的合理性,一般首先考虑两个数的数量级是否相同,像第(1)小题,不难看出>10,结论自然是不难得出;如果两个数看起来比较接近,再去进行精确度更高的估算. 解:(1)错,因为>=10,而显然6.8<10; (2)错,因为<=10,而20>10. 过程与方法:熟记检验计算结果的合理性的两个公式是解决本题的关键. 考点三:利用计算器开方 例4. 用计算器求21.52的平方根(精确到0.001) 【思路分析】先用计算器求出21.52的算术平方根,然后按题意写出其平方根按键顺序为:“”,21.52,“=”,显示结果为:4.6

7、389654 解:±≈±4.639 方法与规律:掌握用计算器开方的按键顺序,根据题意准确地写出结果. 考点四:思维能力拓展 例5: 求下列各式中x的值。 (1); (2). 【思路分析】通过移项将(1)式化为;将(2)式化为,然后利用立方根的定义求解. 解: (1)∵,∴,∴. (2) ∵,, ∴, 即, ∴. 方法规律总结:解此类题,一般将其化为或的形式,再利用立方根的定义求解. 例6. 已知A=是m+n+10的算术平方根,B=是4m+6n-1的立方根,求B-A的立方根. 【思路分析】因为A是m+n+10的算术平方根,可知m-n=

8、2;B是4m+6n-1的立方根,m-2n+3=3,通过解方程组求出m、n的值,再求出A、B,问题得以解决。 解:根据题意有 解方程组得,所以A=,B= 所以B-A=3-4=-1,. 方法规律总结:解决此类题的关键就是进一步透彻理解算术平方根、平方根及立方根的意义及其表示方法。 例7. 丽丽同学去海南旅游时买回了一颗珍珠,经测量体积为7.23456立方厘米。现在,她打算做一个正方体盒子来装这颗珍珠,那么盒子的棱长可以为多少厘米?请你提供两个数据供丽丽参考。(球的体积:r3,其中取3.14) 【思路分析】当盒子的棱长比珍珠的直径大时,才能将这颗珍珠装进正方体盒子里。

9、解:设这颗珍珠的半径为x厘米,根据题意,得x3=7.23456,所以x3=1.728,解得,那么珍珠的直径为2.4厘米。所以盒子的棱长应略大于2.4厘米,可取2.5厘米等。 方法规律总结: 本题属于结论开放性题目,像这类题目的答案实际上有很多种,只要满足盒子的棱长大于珍珠的直径即可。 【本讲涉及的数学思想和方法】 本讲主要讲了立方根的意义及性质、用估计的方法求无理数的近似值和用计算器开方。在学习立方根的意义及性质时,我们利用了类比的数学思想方法,通过类比前面学过的平方根的性质来掌握立方根的性质;在利用立方根的概念和性质解决问题时,我们还用到了方程的数学思想。 预习导学案 (实

10、数) 一、预习前知 1、什么是实数? 2、如何对实数进行分类? 3、实数与数轴的关系是什么? 二、预习导学 探究与反思 探究任务1:实数的概念 1、在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。 2、用数轴表示无理数. 【反思】(1)a是一个实数,则其相反数是_____,绝对值是______? (2)如果a≠0,则其倒数是多少? 探究任务2:实数的运算 1、实数和有理数一样,可以进行加、减、乘、除、乘方运算。 2、归纳出两个运算公式。 【反思】(1)______,题目中a,b的取值范围分别是什么? (2)__

11、题目中a,b的取值范围分别是什么? 1. 在实数中( ) A、实数的绝对值都是正数 B、有绝对值最大的数,也有绝对值最小的数 C、没有绝对值最大的数,但有绝对值最小的数 D、没有绝对值最大的数,也没有绝对值最小的数 2.下列命题中,错误的一个是( ) A、如果a、b互为相反数,那么a+1和b-1仍是互为相反数; B、不论x是什么实数,的值总是大于0; C、n是自然数,一定是一个无理数; D、如果是一个无理数,那么a是非完全平方数. 3.下列计算正确的是( ) A、2 B、2 C、2 D、2 4.如果成立,则(

12、 ) A、x≥6 B、x≥0 C、0≤x≤6 D、x为任意实数 5.化简: (1)=_______;(2)=______;(3)=______; (4)=__________。 【模拟试题】(共60分钟,满分100分) 一、认认真真选(每小题4分,共40分) 1.下列说法不正确的是( ) A.-1的立方根是-1 B.-1的平方是1 C.-1的平方根是-1 D.1的平方根是±1 2.下列说法中正确的是( ) A.-4没有立方根 B.1的立方根是±1 C.的立方根是 D.-

13、5的立方根是 3.在下列各式中:=,=0.1,=0.1,-=-27,其中正确的个数是( ) A.1 B.2 C.3 D.4 ﹡4.若m<0,则m的立方根是( ) A. B.- C.± D. ﹡5.如果是x-6的三次算术根,那么x的值为( ) A.0 B. 3 C.5 D.6 6.已知x是5的算术平方根,则x2-13的立方根是( ) A.-13 B.--13 C.2 D.-2 7.在无理数,,,中,其中在与之间的有( ) A.1个 B.2个 C.3

14、个 D.4个 ﹡8.一个正方体的体积为28360立方厘米,正方体的棱长估计为( ) A.22厘米 B.27厘米 C.30.5厘米 D.40厘米 ﹡9.已知,,则的值等于( ) A.485.8 B.15360 C.0.01536 D.0.04858 ﹡﹡10.若+有意义,则的值是( ) A.0 B. C. D. 二、仔仔细细填(每小题4分,共32分) 11.-的立方根是 ,125的立方根是 。 12.的立方根是 . 13.=_____. 14.-3是

15、的平方根,-3是 的立方根. ﹡15.若,则 ﹡16.将数,,,,1按从小到大的顺序排列为 。 ﹡17.若x<0,则=______,=______. ﹡18. 若x=()3,则=______. 三、平心静气做(共28分) 19. (本题8分)求下列各式中的x. (1)125x3=8 (2)(-2+x)3=-216 ﹡20. (本题10分)已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,求第二个纸盒的棱长. **21. (本题10分) 如图,公路MN和公路PQ在点P处交会,点A处有一所中学,且A点到M

16、N的距离是米.假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?说明理由;如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒? 【试题答案】 一、 1.C 【思路分析】负数没有平方根,所以本题答案是C. 2.D 【思路分析】任何数都有立方根,且一个数的立方根只有一个,据此可以排除A,B两个选项;由于的算术平方根是,故C选项也是错误的. 3.C 【思路分析】由于=,=0.1, -=-27,故本题答案是C. 4.A 【思路分析】负数的立方根是负数,任意一个数a的立方根都表示成,故本题答案是A.

17、 5. D【思路分析】立方根的性质:正数的立方根是正数,负数的立方根是负数。0的立方根是0。本题中6-x的立方根是它的相反数,只有0这种情况。所以6-x=0,所以x=6。 6.D【思路分析】由题意知x2=5,故x2-13=-8,-8的立方根是-2. 7.D【思路分析】借助计算器计算知,,,四个数都在与之间. 8.C【思路分析】正方体体积的立方根就是正方体的棱长. 9. D【思路分析】开平方时,被开方数的小数点移动两位,结果的小数点向相同的方向移动一位,故本题答案是D. 10. B【思路分析】由题意可得=0和=0,得x=,故=. 二、 11. -,5【思路分析】本题直接根据立方根的

18、概念求解. 12.2 【思路分析】意为8的立方根,即2. 13.【思路分析】=. 14.9,-27【思路分析】逆用平方根,立方根的概念求解. 15.0.05 【思路分析】开立方时,被开方数的小数点移动三位,则结果的小数点向相同的方向移动一位. 16. <<1<<【思路分析】当x>0时,被开方数越大,立方根越大. 17. –x,x【思路分析】的算术平方根有两个,分别是x,-x,其中正的平方根是它的算术平方根,故其算术平方根是-x; 根据立方根的概念可以判断=x. 18.2 【思路分析】x=()3=-5,所以. 三、 19.(1) 125x3=8 ,,即x=; (2)-2+x=-6,所以x=-4. 【思路分析】先把方程变成的形式,然后求a的立方根即可. 20.设第二个纸盒的棱长为x,则可得,可得=7。 【思路分析】根据两正方体体积之间的关系把问题转化成方程的问题来求解. 21.解:因为A点到MN的距离是≈93.3米小于噪声的影响范围100米. 有影响, 学校受影响的时间为4秒. 【思路分析】根据来估计出其取值,然后与100米进行对比即可.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服