ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:112KB ,
资源ID:10316684      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316684.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(1112学年高中数学1.3.1函数的单调性与导数同步练习新人教A版选修.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1112学年高中数学1.3.1函数的单调性与导数同步练习新人教A版选修.doc

1、 选修2-2 1.3.1 函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是(  ) A.b2-4ac>0       B.b>0,c>0 C.b=0,c>0 D.b2-3ac<0 [答案] D [解析] ∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)ex的单调递增区间是(  ) A.(-∞,2) B.(0,3) C.(

2、1,4) D.(2,+∞) [答案] D [解析] 考查导数的简单应用. f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为(  ) A.[-1,+∞) B.(-∞,2] C.(-∞,-1)和(1,2) D.[2,+∞) [答案] B [解析] 令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(

3、1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是(  ) [答案] C [解析] 当01时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x∈(-π,π)的单调增区间是(  ) A.和 B.和 C.和 D.和 [答案] A [解析] y′=xcosx,当-π0, 当00,

4、∴y′=xcosx>0. 6.下列命题成立的是(  ) A.若f(x)在(a,b)内是增函数,则对任何x∈(a,b),都有f′(x)>0 B.若在(a,b)内对任何x都有f′(x)>0,则f(x)在(a,b)上是增函数 C.若f(x)在(a,b)内是单调函数,则f′(x)必存在 D.若f′(x)在(a,b)上都存在,则f(x)必为单调函数 [答案] B [解析] 若f(x)在(a,b)内是增函数,则f′(x)≥0,故A错;f(x)在(a,b)内是单调函数与f′(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f′(x)=0存在,但f(x)无单调性,故D错. 7

5、.(2007·福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时(  ) A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0 C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0 [答案] B [解析] f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),∴x<0时,f′(x)>0,g′(x)<0. 8.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a

6、必有(  ) A.af(a)≤f(b) B.bf(b)≤f(a) C.af(b)≤bf(a) D.bf(a)≤af(b) [答案] C [解析] ∵xf′(x)+f(x)≤0,且x>0,f(x)≥0, ∴f′(x)≤-,即f(x)在(0,+∞)上是减函数, 又0<a<b,∴af(b)≤bf(a). 9.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有(  ) A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1) C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1) [答案] C

7、[解析] 由(x-1)f′(x)≥0得f(x)在[1,+∞)上单调递增,在(-∞,1]上单调递减或f(x)恒为常数, 故f(0)+f(2)≥2f(1).故应选C. 10.(2010·江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图像大致为 (  ) [答案] A [解析] 由图象知,五角星露出水面的面积的变化率是增→减→增→减,其中恰露出一个角时变化不连续,故选A. 二、填空题 11.已知y=x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为_

8、. [答案] b<-1或b>2 [解析] 若y′=x2+2bx+b+2≥0恒成立,则Δ=4b2-4(b+2)≤0,∴-1≤b≤2, 由题意b<-1或b>2. 12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+∞)内恒成立,实数a的取值范围为________. [答案] a≥1 [解析] 由已知a>在区间(1,+∞)内恒成立. 设g(x)=,则g′(x)=-<0 (x>1), ∴g(x)=在区间(1,+∞)内单调递减, ∴g(x)<g(1), ∵g(1)=1, ∴<1在区间(1,+∞)内恒成立, ∴a≥1. 13.函数y=ln(x2-x-2

9、)的单调递减区间为__________. [答案] (-∞,-1) [解析] 函数y=ln(x2-x-2)的定义域为(2,+∞)∪(-∞,-1), 令f(x)=x2-x-2,f′(x)=2x-1<0,得x<, ∴函数y=ln(x2-x-2)的单调减区间为(-∞,-1). 14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________. [答案] [3,+∞) [解析] y′=3x2-2ax,由题意知3x2-2ax<0在区间(0,2)内恒成立, 即a>x在区间(0,2)上恒成立,∴a≥3. 三、解答题 15.设函数f(x)=x3-3ax2

10、+3bx的图象与直线12x+y-1=0相切于点(1,-11). (1)求a、b的值; (2)讨论函数f(x)的单调性. [解析] (1)求导得f′(x)=3x2-6ax+3b. 由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f′(1)=-12, 即, 解得a=1,b=-3. (2)由a=1,b=-3得 f′(x)=3x2-6ax+3b=3(x2-2x-3) =3(x+1)(x-3). 令f′(x)>0,解得x<-1或x>3;又令f′(x)<0,解得-1

11、时,f(x)也是增函数; 当x∈(-1,3)时,f(x)是减函数. 16.求证:方程x-sinx=0只有一个根x=0. [证明] 设f(x)=x-sinx,x∈(-∞,+∞), 则f′(x)=1-cosx>0, ∴f(x)在(-∞,+∞)上是单调递增函数. 而当x=0时,f(x)=0, ∴方程x-sinx=0有唯一的根x=0. 17.已知函数y=ax与y=-在(0,+∞)上都是减函数,试确定函数y=ax3+bx2+5的单调区间. [分析] 可先由函数y=ax与y=-的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间. [解析] ∵函数

12、y=ax与y=-在(0,+∞)上都是减函数,∴a<0,b<0. 由y=ax3+bx2+5得y′=3ax2+2bx. 令y′>0,得3ax2+2bx>0,∴-<x<0. ∴当x∈时,函数为增函数. 令y′<0,即3ax2+2bx<0, ∴x<-,或x>0. ∴在,(0,+∞)上时,函数为减函数. 18.(2010·新课标全国文,21)设函数f(x)=x(ex-1)-ax2. (1)若a=,求f(x)的单调区间; (2)若当x≥0时f(x)≥0,求a的取值范围. [解析] (1)a=时,f(x)=x(ex-1)-x2, f′(x)=ex-1+xex-x=(ex-1)(x+1)

13、. 当x∈(-∞,-1)时,f′(x)>0;当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0. 故f(x)在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f(x)=x(ex-1-ax). 令g(x)=ex-1-ax,则g′(x)=ex-a. 若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0. 当a>1,则当x∈(0,lna)时,g′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时g(x)<0,即f(x)<0. 综合得a的取值范围为(-∞,1]. - 6 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服