ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:299.01KB ,
资源ID:10316663      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316663.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学新课三角函数教案.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学新课三角函数教案.doc

1、 课 题:44同角三角函数的基本关系式(一) 教学目的: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 教学重点:同角三角函数的基本关系 教学难点:(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;(2)三角函数式的化简;(3)证明三角恒等式

2、. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:     本节主要涉及到三个公式,均由三角函数定义推出.在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并能灵活运用、掌握各种恒等变形的技能、技巧.要给学生提供展示自己思路的平台,营造自主探究解决问题的环境,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用. 教材中给出了同角三角函数间的三个基本关系式.其实根据这三个基本关系还可以变形得到一些基本关系. 如:由 得:, 同样可以有: , ,等等,可以引导学生和用三个基本关系进行转换,培养学生的自主学习习惯. 教

3、材中的3个基本关系式,只有:sin2+cos2=1是绝对恒等式,即对于任意实数都成立,另外两个公式,仅当取使关系式的两边都有意义的值时才能成立.因此,在运用这些公式进行恒等变形时,角的允许值范围有时会发生变化是不奇怪的,在教学中可经常提醒学生注意这一点. 这组公式的灵活运用是本节教学的难点.灵活运用的前提是熟练掌握公式.弄清它们的来笼去脉是解决这一问题的有效方法.从“左”到“右”或从“右”到“左”运用公式,最后达到灵活运用,同时要明确它们成立的先决条件.教材中指出:“在第二个式子中时,式子两边都有意义;在第三个式子中,α的终边不在坐标轴上,这时,式子两边都有意义,”并指出:“除特殊注明的情况

4、外,也都假定是在使两边都有意义的情况下的恒等式.”这段话学生是不太容易理解的,教师应适当加以解释.首先应让学生分析等式两边的三角式的取值范围,并从中发现,两边的取值范围经常是不相同的,如果一个等式在这两个数值集合的交集上总能保持相等,那么这个等式就是恒等式.因此,每一个恒等式并不是对任何值都能保持相等,所以可以认为,这组公式的成立也是有条件的,公式后面括号里给出条件是不容忽视的. 教学过程: 一、复习引入: 1设是一个任意角,在的终边上任取(异于原点的)一点P(x,y) 则P与原点的距离 2.任意角的三角函数的定义及其定义域 R R

5、 以上六种函数,统称为三角函数 3 三角函数在各象限内的符号规律: 第一象限全为正,二正三切四余弦 4 终边相同的角的同一三角函数值相等 诱导公式一(其中): 用弧度制可写成 这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题. 二、讲解新课: 1.公式: 2.采用定义证明: 3.推广:这种关系称为平方关系,类似的平方关系还有: 这种关系称为商数关系,类似的商数

6、关系还有: 这种关系称为倒数关系类似的倒数关系还有: 4.点题:三种关系,八个公式,称为同角三角函数的基本关系 5.注意: 1°“同角”的概念与角的表达形式无关, 如: 2°上述关系(公式)都必须在定义域允许的范围内成立 3°据此,由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号 6.这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系) ②任一角的函数等于与其相邻的两个函数的积(商数关系) ③阴影部分,顶

7、角两个函数的平方和等于底角函数的平方(平方关系) 三、讲解范例: 例1. 已知,并且是第二象限角,求的其他三角函数值. 分析:由平方关系可求cos的值,由已知条件和cos的值可以求tan的值,进而用倒数关系求得cot的值. 解:∵sin2α+cos2α=1,是第二象限角 例2.已知,求sin、tan的值. 分析:∵cosα<0  ∴是第二或第三象限角.因此要对所在象限分类. 当是第二象限角时, 当是第三象限时 提问:不计算sin的值,能否算得tan的值? 由于而在Ⅱ或III象限 例3.已知tan为非零实数,用tan表示sin,cos.

8、 解:由 即 而 四、课堂练习: 1.已知 , 求的值. 解法1: ∵, ∴在Ⅰ、Ⅳ象限, 当α在Ⅰ象限时, ∴ 当在Ⅳ象限时 ∴ 解法2: 当在Ⅰ象限时, 当在Ⅳ象限时 2.已知,求的值 解∵ tan = 2 > 0,∴在Ⅰ、Ⅲ象限 ①当在Ⅰ象限时.    ②当在Ⅲ象限时 , 注意:此题在求出cos的值以后,若直接用平方关系求sin的值,有符号判断问题,需要再分类,就出现二次分类增添了解决问题的复杂性.本题采用了商数关系,避开了引用平方关系求sin值,使得问题

9、轻松获解. 3.已知tan=-3,则sin= ,cot = . 思路分析:由tan=-3<0知,在第二或第四象限, ∴可分类后用同角三角函数基本关系求解.(略) 由于这是一个填空题, ∴可先将角视为锐角,求出sin和cot的值,然后具体的再看角所在象限得出sin、cot的符号. 将视为锐角′,则有tan′=3, ∴′= cot′=, ∴在第Ⅱ或第Ⅳ象限. ∴ 五、小结与总结 已知角的一个三角函数值求其他三角函数值时,应用平方关系确定符号是个难点,一般地说,这类计算题可分为以下三种情况:⑴已知象限,由象限定符号;⑵已知值,由值分情况讨论;⑶值是字母

10、开平方时,分情况讨论 六、课后作业: 七、板书设计(略) 八、课后记: 思考题:1已知,求下列各式的值 ①sin3α+cos3α ②sin4α+cos4α ③sin6α+cos6α 分析:由两边平方,整理得 然后将各式化成关于sinα+cosα,sinαcosα的式子将上两式的值代入即可求得各式的值答案:① ② ③ 注意:sinα+cosα、sinα·cosα称为关于角α的正弦和余弦的基本对称式,关于sinα、cosα的所有对称式都可以用基本对称式来表示 2已知sinα·cosα=,且,则cosα-sinα的值是多少? 分析:由sinα·cosα=得2sinαcosα= sin2α-2sinαcosα+cos2α=1- (cosα-sinα)2= ∵,∴cosα<sinα, 即cosα-sinα<0 ∴cosα-sinα=-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服