ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:480.51KB ,
资源ID:10316460      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316460.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初三数学圆.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初三数学圆.doc

1、 初三数学 圆 一、知识点 1、与圆有关的角——圆心角、圆周角 (1)图中的圆心角 ;圆周角 ; (2)如图,已知∠AOB=50度,则∠ACB= 度; (3)在上图中,若AB是圆O的直径,则∠AOB= 度; 2、圆的对称性: (1)圆是轴对称图形,其对称轴是任意一条 的直线; 圆是中心对称图形,对称中心为 . (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 如图,∵CD是

2、圆O的直径,CD⊥AB于E ∴ = , = 3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例1:已知圆的半径r等于5厘米,点到圆心的距离为d, (1)当d=2厘米时,有d r,点在圆 (2)当d=7厘米时,有d r,点在圆 (3)当d=5厘米时,有d r,点在圆 4、直线和圆的位置关系有三种:相 、相 、相 . 例2:已知圆的半径r等于12厘米,圆

3、心到直线l的距离为d, (1)当d=10厘米时,有d r,直线l与圆 (2)当d=12厘米时,有d r,直线l与圆 (3)当d=15厘米时,有d r,直线l与圆 5、圆与圆的位置关系: 例3:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d, 则:R+r= , R-r= ; (1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是: (2)当d=2厘米时, 因为d R-r,则⊙O1和⊙O2位置关系是:

4、 (3)当d=15厘米时,因为 ,则⊙O1和⊙O2位置关系是: (4)当d=7厘米时, 因为 ,则⊙O1和⊙O2位置关系是: (5)当d=1厘米时, 因为 ,则⊙O1和⊙O2位置关系是: 6、切线性质: 例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度 (2)如图,PA、PB是⊙O的切线,点A、B是切点, 则 = ,∠ =∠ ; 7、圆中的有关计算 (1)弧长的计算公式: 例5:

5、若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长= 所以== (答案保留π) (2)扇形的面积: 例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? 解:因为扇形的面积S= 所以S== (答案保留π) ②若扇形的弧长为12πcm,半径为6㎝,则这个扇形的面积是多少? 解:因为扇形的面积S= 所以

6、S= = (3)圆锥: 例7:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少? 解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积= 8、三角形的外接圆的圆心——三角形的外心——三角形的 交点; 三角形的内切圆的圆心——三角形的内心——三角形的 交点; 例8:画出下列三角形的外心或内心 (1)画三角形ABC的内切圆, (2

7、画出三角形DEF的外接圆, 并标出它的内心; 并标出它的外心 二、练习: (一)填空题 1、如图,弦AB分圆为1:3两段,则的度数= 度, 第1小题 的度数等于 度;∠AOB= 度,∠ACB= 度, 2、如图,已知A、B、C为⊙O上三点,若、、的 度数之比为1∶2∶3,则∠AOB= ,∠AOC= , 第2小题 ∠ACB= , 3、如图1-3-2,在⊙O中,弦AB=1.8cm,圆周角∠ACB=30○ , 则 ⊙

8、O的半径等于=_________cm. 4、⊙O的半径为5,圆心O到弦AB的距离OD=3, 则AD= ,AB的长为 ; 第4、5小题 5、如图,已知⊙O的半径OA=13㎝,弦AB=24㎝, 则OD= ㎝。 6、如图,已知⊙O的直径AB=10cm,弦AC=8cm, 则弦心距OD等于 cm. 第6小题 7、已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2 外切,则O1O2= 。 8、已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2内切,则O1O2= 。

9、 9、已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2相切,则O1O2= 。 10、已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2相交,则两圆的圆心距d的取值范围是 11、已知⊙O1和⊙O2外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径为_____ ___cm. 12、已知⊙O1和⊙O2内切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径为______ __cm. 13、已知⊙O1和⊙O2相切,且圆心距为10cm,若⊙O1的半径为3cm,

10、则⊙O2的半径为______ _cm. 14、如图1-3-35是小芳学习时使用的圆锥形台灯灯罩的示意图, 则围成这个灯罩的铁皮的面积为________cm2 (不考虑接缝等因 素,计算结果用π表示). 15、如图,两个同心圆的半径分别为2和1,∠AOB=, 则阴影部分的面积是_________ 16、一个圆锥的母线与高的夹角为30°,那么这个圆锥的侧面展开图中扇形的弧长与半径的比是 (二)选择题 1、如图1-3-7,A、B、C是⊙O上的三点,∠BAC=30° 则∠BOC的大小是( ) A.60○ B.4

11、5○ C.30○ D.15○ 2、如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,=, 则∠DAC的度数是( ) (A)30° (B) 35° (C) 45° (D) 70° 3、如图1-3-16,PA为⊙O的切线,A为切点,PO交 ⊙O于 点B,PA=4,OA=3,则cos∠APO的值为( ) 4、PA切⊙O于A,PA = ,∠APO = 30,则PO的为( ) A B 2 C 1 D 5、圆柱的母线长5

12、cm,为底面半径为1cm,则这个圆拄的侧面积是( ) A.10cm2 B.10πcm2 C.5cm2 D.5πcm2 6、如图,一个圆柱形笔筒,量得笔筒的高是20cm,底面圆的半径为5cm, 那么笔筒的侧面积为( ) A.200cm2 B.100πcm2  C.200πcm2   D.500πcm2 7、制作一个底面直径为30cm,高40cm的圆柱形无盖铁桶,所需铁皮至少为( ), A.1425πcm2 B.1650πcm2 C.2100πcm2 D.2625πcm2 8、已知圆锥的底面半径为3,高为4,则圆锥的

13、侧面积为( ) (A)10π (B)12π (C)15π (D)20π 9、如图,圆锥的母线长为5cm,高线长为4cm,则圆锥的底面积是( ) A.3πcmZ B.9πcmZ C.16πcmZ D.25πc 10、如图,若四边形ABCD是半径为1cm的⊙O的内接正方形, 则图中四个弓形(即四个阴影部分)的面积和为( ). (A) (B) (C) (D) (三)解答题 1、如图,直角三角形ABC是⊙O的内接三角形,∠ACB=90°,∠A=30°,过点C 作⊙O的切线交AB的延长线于点D,连

14、结CO。请写出六个你认为正确的结论; (不准添加辅助线); 解:(1) ; (2) ; (3) ; (4) ; (5) ; (6) ; 2、⊙O和⊙O半径之比为,当OO= 21 cm时,两圆外切,当两圆内切时,OO的长度应多少?

15、3、如图,⊙O的内接四边形ABCD的对角线交于P,已知AB=BC,求证:△ABD∽△DPC 4、如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数。 5、以点O(3,0)为圆心,5个单位长为半径作圆,并写出圆O与坐标轴的交点坐标; 解:圆O与x轴的交点坐标是: 圆O与y轴的交点坐标是: 6、如图,半圆的半径为2cm,点C、D三等分半圆,求阴影部分面

16、积 7、如图,AB是⊙O的直径,PB与⊙O相切与点B,弦AC∥OP,PC交BA的延长线于点D,求证:PD是⊙O的切线, A B C D O P 8、已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC。 求证:(1)BC平分∠PBD; (2)。 9、如图,CB、CD是⊙O的切线,切点分别为B、D,CD的延长线与⊙O的 直径BE的延长线交于A点,连OC,ED. (1)探索OC与ED的位置关系,并加以证明; (2)若OD=4,CD=

17、6,求tan∠ADE的值. 圆 答案 一、知识点: 1、(1)∠AOB ∠ACB (2)25; (3)90; 2、(1)直径所在的直线;圆心 (2)AE=BE,弧AC=弧BC; 3、内,上,外,例1:(1)<,内;(2),> ,外,(3)=,上; 4、交,切,离 例2:(1)<,相交;(2), =,相切,(3)>,相离; 5、例3:14,2;(1)=,外切;(2)=,内切;(3)d>R+r,外离;(4)R-r

18、PO; 7、(1)例5:π;(2)例6:①;②36πcm2;(3)例7:20πcm2; 8、三角形的三边垂直平分线,角平分线; 二、练习 (一)填空题:1,90,270,90,45; 2,60度,120度,30度; 3,1.8; 4,4,8;5,5; 6,3; 7,7; 8,1; 9,7或1; 10,1

19、DB=∠CDB,∵∠ABD=∠ACD,∴△ABD∽△DPC; 4、40度;5、(-2,0),(8,0); (0,4)、(0,-4) ;6、 ; 7、连结OC,证明△POC≌△POB,得∠PCO=∠=90度,所以PD是圆O的切线; 8、证明:(1)连结OC。 ∵PD切⊙O于点C, 又∵BD⊥PD, ∴OC∥BD。 ∴∠1=∠3。 又∵OC=OB, ∴∠2=∠3。 ∴∠1=∠2,即BC平分∠PBD。 (2)连结AC。 ∵AB是⊙O的直径, ∴∠ACB=90°。 又∵BD⊥PD, ∴∠ACB=∠CDB=90° 又∵∠1=∠2, ∴△ABC∽△CBD ∴, ∴ 9、(1)OC∥ED;(2)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服