ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:140.50KB ,
资源ID:10316452      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316452.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(1112学年高中数学1.7定积分的简单应用同步练习新人教A版选修.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1112学年高中数学1.7定积分的简单应用同步练习新人教A版选修.doc

1、 选修2-2 1.7 定积分的简单应用 一、选择题 1.如图所示,阴影部分的面积为(  ) A.f(x)dx        B.g(x)dx C.[f(x)-g(x)]dx D.[g(x)-f(x)]dx [答案] C [解析] 由题图易知,当x∈[a,b]时,f(x)>g(x),所以阴影部分的面积为[f(x)-g(x)]dx. 2.如图所示,阴影部分的面积是(  ) A.2 B.2- C. D. [答案] C [解析] S=-3(3-x2-2x)dx 即F(x)=3x-x3-x2, 则F(1)=3-1-=,

2、 F(-3)=-9-9+9=-9. ∴S=F(1)-F(-3)=+9=.故应选C. 3.由曲线y=x2-1、直线x=0、x=2和x轴围成的封闭图形的面积(如图)是(  ) A.(x2-1)dx B.|(x2-1)dx| C.|x2-1|dx D.(x2-1)dx+(x2-1)dx [答案] C [解析] y=|x2-1|将x轴下方阴影反折到x轴上方,其定积分为正,故应选C. 4.设f(x)在[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成图形的面积为(  ) A.f(x)dx B.|f(x)dx| C.|f(x)|dx D.以上都不

3、对 [答案] C [解析] 当f(x)在[a,b]上满足f(x)<0时,f(x)dx<0,排除A;当阴影有在x轴上方也有在x轴下方时,f(x)dx是两面积之差,排除B;无论什么情况C对,故应选C. 5.曲线y=1-x2与x轴所围图形的面积是(  ) A.4     B.3     C.2     D. [答案] B [解析] 曲线与x轴的交点为, 故应选B. 6.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t =0s到t=3s时间段内的位移是 (  ) A.31m    B.36m    C.38m    D.40m [答案]

4、 B [解析] S=(3t2+2t)dt=(t3+t2)=33+32=36(m),故应选B. 7.(2010·山东理,7)由曲线y=x2,y=x3围成的封闭图形面积为(  ) A.     B.     C.     D. [答案] A [解析] 由得交点为(0,0),(1,1). ∴S=(x2-x3)dx==. 8.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=3处(单位:m),则力F(x)所做的功为(  ) A.8J      B.10J    C.12J    D.14J [答案] D [解析

5、] 由变力做功公式有:W=(4x-1)dx=(2x2-x)=14(J),故应选D. 9.若某产品一天内的产量(单位:百件)是时间t的函数,若已知产量的变化率为a=,那么从3小时到6小时期间内的产量为(  ) A. B.3- C.6+3 D.6-3 [答案] D [解析] dt==6-3,故应选D. 10.过原点的直线l与抛物线y=x2-2ax(a>0)所围成的图形面积为a3,则直线l的方程为(  ) A.y=±ax B.y=ax C.y=-ax D.y=-5ax [答案] B [解析] 设直线l的方程为y=kx, 由得交点坐

6、标为(0,0),(2a+k,2ak+k2) 图形面积S=∫[kx-(x2-2ax)]dx = =-==a3 ∴k=a,∴l的方程为y=ax,故应选B. 二、填空题 11.由曲线y2=2x,y=x-4所围图形的面积是________. [答案] 18 [解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组得交点坐标为(2,-2),(8,4). 因此所求图形的面积S=-2(y+4-)dy 取F(y)=y2+4y-,则F′(y)=y+4-,从而S=F(4)-F(-2)=18. 12.一物体沿直线以v=m/s的速度运动,该物体运动开始后10s内所经过的路程是

7、. 13.由两条曲线y=x2,y=x2与直线y=1围成平面区域的面积是________. [答案]  [解析] 如图,y=1与y=x2交点A(1,1),y=1与y=交点B(2,1),由对称性可知面积S=2(x2dx+dx-x2dx)=. 14.一变速运动物体的运动速度v(t)= 则该物体在0≤t≤e时间段内运动的路程为(速度单位:m/s,时间单位:s)______________________. [答案] 9-8ln2+ [解析] ∵0≤t≤1时,v(t)=2t,∴v(1)=2; 又1≤t≤2时,v(t)=at, ∴v(1)=a=2,v(2)=a2=

8、22=4; 又2≤t≤e时,v(t)=, ∴v(2)==4,∴b=8. ∴路程为S=2tdt+2tdt+dt=9-8ln2+ . 三、解答题 15.计算曲线y=x2-2x+3与直线y=x+3所围图形的面积. [解析] 由解得x=0及x=3. 从而所求图形的面积 S=(x+3)dx-(x2-2x+3)dx =[(x+3)-(x2-2x+3)]dx =(-x2+3x)dx ==. 16.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2. (1)求y=f(x)的表达式; (2)若直线x=-t(0<t<1)把y=f(x)的图象与两坐标轴

9、所围成图形的面积二等分,求t的值. [解析] (1)设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b, 又已知f′(x)=2x+2,∴a=1,b=2, ∴f(x)=x2+2x+c. 又方程f(x)=0有两个相等实根. ∴判别式Δ=4-4c=0,即c=1. 故f(x)=x2+2x+1. (2)依题意有(x2+2x+1)dx=-t(x2+2x+1)dx, ∴= 即-t3+t2-t+=t3-t2+t. ∴2t3-6t2+6t-1=0, ∴2(t-1)3=-1,∴t=1- . 17.A、B两站相距7.2km,一辆电车从A站开往B站,电车开出ts后到达途中C点,这

10、一段速度为1.2t(m/s),到C点的速度达24m/s,从C点到B站前的D点以等速行驶,从D点开始刹车,经ts后,速度为(24-1.2t)m/s,在B点恰好停车,试求: (1)A、C间的距离; (2)B、D间的距离; (3)电车从A站到B站所需的时间. [解析] (1)设A到C经过t1s, 由1.2t=24得t1=20(s), 所以AC=∫1.2tdt=0.6t2=240(m). (2)设从D→B经过t2s, 由24-1.2t2=0得t2=20(s), 所以DB=∫(24-1.2t)dt=240(m). (3)CD=7200-2×240=6720(m). 从C到D的时间为

11、t3==280(s). 于是所求时间为20+280+20=320(s). 18.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围成的面积为,试求: (1)切点A的坐标; (2)过切点A的切线方程. [解析] 如图所示,设切点A(x0,y0),由y′=2x,过A点的切线方程为y-y0=2x0(x-x0), 即y=2x0x-x. 令y=0得x=,即C. 设由曲线和过A点的切线及x轴所围成图形的面积为S, S=S曲边△AOB-S△ABC. S曲边△AOB=∫x00x2dx=x, S△ABC=|BC|·|AB| =·x=x, 即S=x-x=x=. 所以x0=1,从而切点A(1,1),切线方程为y=2x-1. - 7 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服