ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:451.01KB ,
资源ID:10315846      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10315846.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(八年级数学下册第18章平行四边形单元综合检测.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册第18章平行四边形单元综合检测.doc

1、第18章 平行四边形单元综合检测(三) 一、选择题(每小题4分,共28分) 1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是 (  ) 2.如图,已知菱形ABCD的对角线AC,BD的长分别是6cm,8cm,AE⊥BC于点E,则AE的长是(  ) A.5cm     B.2cm C.cm     D.cm 3.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为(  ) A.4∶1∶2 B.4∶1∶3 C.3∶1∶2 D.5∶1∶2 4.(2013·邵阳中考)如图所示,点E是矩形A

2、BCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论不正确的是(  ) A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 5.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为(  ) A.平行四边形 B.矩形 C.菱形 D.正方形 6.(2013·威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(  ) A.

3、BC=AC    B.CF⊥BF C.BD=DF    D.AC=BF 7.如图,△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为(  ) A.3cm    B.4cm C.2cm    D.2cm 二、填空题(每小题5分,共25分) 8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为    . 9.(2013·厦门中考)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的

4、周长是18厘米,则EF=    厘米. 10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是    . 11.(2013·牡丹江中考)如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是    . 12.(2013·钦州中考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是     . 三、解答题(

5、共47分) 13.(10分)(2013·大连中考)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且AE=CF. 求证:BE=DF. 14.(12分)(2013·晋江中考)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:BE=BF. 15.(12分)(2013·铁岭中考)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE. (1)求证:四边形AEBD是矩形. (2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由. 16.(13分)(201

6、3·济宁中考)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE. (1)求证:AF=BE. (2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由. 答案解析 1.【解析】选C.A项,根据两直线平行内错角相等可得到,故正确;B项,根据对顶角相等可得到,故正确;C项,根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D项,根据平行四边形对角相等可得到,故正确. 2.【解析】选D.由于菱形ABCD的对角线AC,BD的长分别是6cm,8cm,所

7、以菱形边长为=5,所以×6×8=5AE,解得AE=. 3.【解析】选A.∵四边形ABCD是平行四边形, ∴∠CDE=∠DEA. ∵DE是∠ADC的平分线,∴∠CDE=∠ADE, ∴∠DEA=∠ADE,∴AE=AD=4. ∵F是AB的中点,∴AF=AB=3. ∴EF=AE-AF=1,BE=AB-AE=2, ∴AE∶EF∶BE=4∶1∶2. 4.【解析】选A.∵AD=DE,DO∥AB, ∴OD为△ABE的中位线,∴OD=OC, ∵在△AOD和△EOD中, ∴△AOD≌△EOD; ∵在△AOD和△BOC中, ∴△AOD≌△BOC; ∵△AOD≌△EOD,∴△BOC≌△EO

8、D; 故B,C,D选项均正确. 5.【解析】选C.∵EH∥BD,FG∥BD,∴EH∥FG,又EF∥AC,∴四边形AEFC是平行四边形,∴EF=AC,同理GH=AC,EH=BD,FG=BD.∵在矩形ABCD中,AC=BD, ∴EF=FG=GH=EH,∴四边形EFGH是菱形. 6.【解析】选D.∵EF垂直平分BC, ∴BE=EC,BF=CF, ∵BF=BE,∴BE=EC=CF=BF, ∴四边形BECF是菱形. 当BC=AC时,∵∠ACB=90°,则∠A=45°. ∵∠A=45°,∠ACB=90°,∴∠EBC=45°. ∴∠EBF=2∠EBC=2×45°=90°, ∴菱形BEC

9、F是正方形. 当CF⊥BF时,利用正方形的判定定理得出,菱形BECF是正方形; 当BD=DF时,利用正方形的判定得出,菱形BECF是正方形; 当AC=BF时,无法得出菱形BECF是正方形,故选项D符合题意. 7.【解析】选D.∵点D,E分别是边AB,AC的中点, ∴DE=BC, ∵DE=2cm,∴BC=4cm, ∵AB=AC,四边形DEFG是正方形. ∴△BDG≌△CEF,∴BG=CF=1cm, ∴EC=,∴AC=2cm. 8.【解析】设CE与AD相交于点F. ∵在平行四边形ABCD中,过点C的直线CE⊥AB, ∴∠E=90°, ∵∠EAD=53°, ∴∠EFA=9

10、0°-53°=37°,∴∠DFC=37°. ∵四边形ABCD是平行四边形, ∴AD∥BC,∴∠BCE=∠DFC=37°. 答案:37° 9.【解析】∵▱ABCD的对角线AC,BD相交于点O,AC+BD=24厘米,∴OA+OB=12厘米. ∵△OAB的周长是18厘米,∴AB=6厘米. ∵点E,F分别是线段AO,BO的中点, ∴EF=3厘米. 答案:3 10.【解析】∵CE∥BD,DE∥AC, ∴四边形CODE是平行四边形. ∵四边形ABCD是矩形, ∴AC=BD=4,OA=OC=OB=OD, ∴OD=OC=AC=2, ∴四边形CODE是菱形, ∴四边形CODE的周长

11、为4OC=4×2=8. 答案:8 11.【解析】连接DB, ∵四边形ABCD是菱形, ∴AD=AB,AC⊥DB, ∵∠DAB=60°, ∴△ADB是等边三角形, ∴DB=AD=1,∴BM=, ∴AM=,∴AC=, 同理可得AE=AC=()2, AG=AE=3=()3, 按此规律所作的第n个菱形的边长为()n-1. 答案:()n-1 12.【解析】如图,连接DE,交AC于点P,连接BP, 则此时PB+PE的值最小. ∵四边形ABCD是正方形, ∴B,D关于AC对称, ∴PB=PD, ∴PB+PE=PD+PE=DE. ∵BE=2,AE=3BE, ∴AE=6,

12、AB=8, ∴DE==10, 故PB+PE的最小值是10. 答案:10 13.【证明】∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC, ∵AE=CF,∴DE=BF,DE∥BF, ∴四边形DEBF是平行四边形, ∴BE=DF. 14.【证明】∵四边形ABCD是菱形, ∴AB=BC,∠A=∠C. 在△ABF和△CBE中, ∴△ABF≌△CBE(SAS), ∴BF=BE. 15.【解析】(1)∵点O为AB的中点,连接DO并延长到点E,使OE=OD, ∴四边形AEBD是平行四边形, ∵AB=AC,AD是△ABC的角平分线, ∴AD⊥BC,∴∠ADB=90°,

13、 ∴平行四边形AEBD是矩形.即四边形AEBD是矩形. (2)当∠BAC=90°时,矩形AEBD是正方形.理由: ∵∠BAC=90°,AB=AC,AD是△ABC的角平分线, ∴AD=BD=CD, ∵由(1)得四边形AEBD是矩形, ∴矩形AEBD是正方形. 16.【解析】(1)在正方形ABCD中,AB=AD,∠BAE=∠D=90°, ∴∠DAF+∠BAF=90°, ∵AF⊥BE,∴∠ABE+∠BAF=90°, ∴∠ABE=∠DAF, ∵在△ABE和△DAF中, ∴△ABE≌△DAF(ASA),∴AF=BE. (2)MP与NQ相等. 理由如下:如图,过点A作AF∥MP交CD于点F,过点B作BE∥NQ交AD于点E, 则与(1)的情况完全相同.而MP=AF,NQ=BE, ∴MP=NQ.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服