ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:484KB ,
资源ID:10315674      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10315674.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(人版七年级数学(上册)知识点归纳总结和典型试题汇总.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人版七年级数学(上册)知识点归纳总结和典型试题汇总.doc

1、 WORD完美格式 人教版七年级数学上册 第一章有理数 知识要点 本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。 1.有理数: (1)凡能写成形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p (是

2、不是)有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数Û 0和正整数; a>0 Û a是正数; a<0 Û a是负数; a≥0 Û a是正数或0 Û a是非负数; a≤ 0 Û a是负数或0 Û a是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还

3、是0; (2)注意: a-b+c的相反数是 ;a-b的相反数是 ;a+b的相反数是 ; (3)相反数的和为 Û a+b=0 Û a、b互为相反数. (4)相反数的商为 . (5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值: (1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或

4、 ; (3) ; ; (4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意: 没有倒数; 若ab=1Û a、b互为 ; 若ab=-1Û a、b互为 . 等于本身的数汇总: 相反数等于本身的数:

5、 倒数等于本身的数: 绝对值等于本身的数: 平方等于本身的数: 立方等于本身的数: 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这

6、个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律: (1) 乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;

7、 (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0; (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。 (5)据规律 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数

8、10的指数+1 16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。 第一章、 基础训练 选择题 1、下列运算中正确的是( ).  A. |-2|=-2 B. -32=-27 C. |(3-π)|=-π-3 D. 32=-9 2、下列各判断句中错误的是( )

9、 A.数轴上原点的位置可以任意选定 B.数轴上与原点的距离等于个单位的点有两个 C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示 D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。 3、、是有理数,若>且,下列说法正确的是( ) A.一定是正数 B.一定是负数 C.一定是正数 D.一定是负数 4、两数相加,如果比每个加数都小,那么这两个数是( ) A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数

10、 5、两个非零有理数的和为零,则它们的商是() A.0 B.-1 C.+1 D.不能确定 6、一个数和它的倒数相等,则这个数是( ) A.1 B.-1 C. ±1 D. ±1和0 7、如果|a|=-a,下列成立的是( ) A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=0 8、(-2)11+(-2)10的值是(

11、 ) A.-2 B.(-2)21 C.0 D.-210 9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A.3瓶 B. 4瓶 C. 5瓶 D. 6瓶 10、在下列说法中,正确的个数是( ) ⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数 A、1 B、2

12、 C、3 D、4 11、如果一个数的相反数比它本身大,那么这个数为( ) A、正数 B、负数 C、整数 D、不等于零的有理数 12、下列说法正确的是( ) A、几个有理数相乘,当因数有奇数个时,积为负; B、几个有理数相乘,当正因数有奇数个时,积为负; C、几个有理数相乘,当负因数有奇数个时,积为负; D、几个有理数相乘,当积为负数时,负因数有奇数个; 13、如果零上3℃记作+3℃,那么零下3℃记作( ) A、—3 B、-6 C、-3℃ D、-6℃ 14

13、若a与2互为相反数,则∣a+2∣等于( ) A、0 B、-2 C、2 D、4 第二章 整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号); 单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。 3.多项式:几个单项式的和叫多项式。 X k b 1 . c o m 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式

14、的项;多项式里,次数最高项的次数叫多项式的次数; 5. (整式是代数式,但是代数式不一定是整式)。 6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并) 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母

15、的升幂排列(或降幂排列)。 第二章整式的加减 一、选择题(小题3分,共30分) 1.下列各式中是多项式的是 ( ) A. B. C. D. 2.下列说法中正确的是( ) A.的次数是0 B.是单项式 C.是单项式 D.的系数是5 x x x x x 3.如图1,为做一个试管架,在cm长的木条上钻了4个圆孔,每个孔直径2cm,则 等于 ( )

16、 图 1 A.cm B.cm C.cm D.cm 4.( ) A. B. C. D. 5.只含有的三次多项式中,不可能含有的项是 ( ) A. B. C. D. 6.化简 的结果是 ( ) A. B. C. D. 7.一台电视机成本价为元,销售价比成本价增加了,因库存积压,所以就按销售价的出售,那么每台实际

17、售价为 ( ) A.元 B.元 C.元 D.元 8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面. ,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( ) A . B. C. D . 9.把(x-3)2-2(x-3)-5(x-3)2+(x-3)中的(x-3)看成一个因式合并同类项,结果应(  ) A. -4(x-3)2+(x-3) B. 4(x-3)2-x (x-3) C. 4(x-3)2-

18、x-3)   D . -4(x-3)2-(x-3) 二、填空题(每小题3分,共30分) 11.单项式的系数是 ,次数是 . 12.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是_____. 13.当时,代数式的值是 ; 14.计算: ; 16.规定一种新运算:,如,请比较大小:(填“>”、“=”或“>”). 17.根据生活经验,对代数式作出解释: ; 18.某城市按以下规定收取每月的煤气

19、费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费 元. 20.观察下列单项式:0,3x2,8x3,15x4,24x5,……,按此规律写出第13个单项式是______。 三、解答题(共60分) 21. (12分)化简: (1); (2); (3) ; 22.(8分)化简求值 (1) 其中 . (2) 其中 .

20、 23.(6分)已知 ,,求. 24.(6分)如图所示,一扇窗户的上部是由4个扇形组成的半圆形,下部是边长相同的4个小正方形,请计算这扇窗户的面积和窗框的总长. a 26. (6分)某商店有两个进价不同的计算器都卖了元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了,还是赔了?赚了或赔了多少? 27. (7分)试至少写两个只含有字母、的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或-1;(3)不含常数项;(4)每一

21、项必须同时含字母、,但不能含有其他字母. 28. (9分)某农户2007年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元. (1)分别用a,b表示两种方式出售水果的收入? (2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好. (3)该农户加强果园管理,力

22、争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)? 第三章 一元一次方程 1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等. 3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程). 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注

23、意:“方程的解就能代入”。 5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号). 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质 去 分 母----------同乘(不漏乘)最简公分母 去 括 号----------注意符号变化 移 项----------变号(留下靠前) 合并同类项--------

24、合并后符号w w w .x k b 1.c o m 系数化为1---------除前面 10.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问

25、题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式: (1)行程问题: 路程=速度·时间 ; (2)工程问题:工作量=工作效率·工作时间 ; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b 1.c o m (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价 , ; 利润问题常用等量关系:

26、 售价-进价=利润 (5)配套问题: (6)分配问题 填空题 1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。 2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。 3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用

27、科学记数法表示一个n位整数,其中10的指数是___________. 4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.   5、绝对值大于1而小于4的整数有_____________________________________,其和为___________. 6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________. 7、1-2+3-4+5-6+……+2001-2002的值是____________. 8、若(a-1)2+|b+2|=0,那么a+b=_________________

28、 9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________. 10、用四舍五入法把3.1415926精确到千分位是           ,用科学记数法表示302400,应记为             ,近似数3.0× 精确到           位。 11、正数–a的绝对值为__________;负数–b的绝对值为________ 12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大 13、在数轴上表示两个数, 的数总比 的大。(用“左边”“右

29、边”填空) 14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。 15、温度由-5℃下降3℃后,结果可记为_____. 16、-1/3的相反数是_______,绝对值是_______,倒数是_______. 三、强化训练 1、计算:1+2+3+…+2002+2003=__________. 2、已知:若(a,b均为整数)则a+b= 3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来 4、已知,则____

30、 5、已知是整数,是一个偶数,则a是 (奇,偶) 6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。 7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。 8、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。 9、已知|x+1|=4,(y+2)2=4,求x+y的值。 10、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。 例:某股民在上星期五买进某种股票500股,每股60元,下

31、表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨跌 +4 +4.5 -1 -2.5 -6 (1) (1)  星期三收盘时,每股是多少元? (2) (2)  本周内最高价是每股多少元?最低价是多少元? (3)   已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何? (4) 以买进的股价为0点,用折线统计图表示本周该股的股价情况。 【典型例题】 一、一元一次方程的有关概念 例1.一个一元一

32、次方程的解为2,请写出这个一元一次方程 . 二、一元一次方程的解 例2.若关于的一元一次方程的解是,则的值是( ) A. B.1 C. D.0 三、一元一次方程的解法 例3.如果,那么等于( ) (A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45 例4. {[(x-1)-3]-3}=3 四、一元一次方程的实际应用 例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1

33、680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐. (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐; (2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元? 例7.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好! 售货员:同学,你好,想买点什么

34、 李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗? 第四章 图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等. 主视图---------从正面看 2、几何体的三视图 左视图---------从左边看 俯视图---------从上面看 (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基

35、本几何体或实物原型. 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的. (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 名称 直线 射线 线段 图形 a B A a A B a B A

36、 端点个数 无 一个 两个 表示法 直线a 直线AB(BA) 射线a 射线AB 线段a 线段AB(BA) 作法叙述 作直线a 作直线AB; 作射线a 作射线AB 作线段a; 作线段AB; 连接AB 延长 向两端无限延长 向一端无限延长 不可延长 2、直线的性质 经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平

37、均分成两条相等线段的点. 图形: A M B 符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM. 6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离 连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身). 8、点与直线的位置关系 (1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角 1、角:有公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种): 表示方法 A

38、 图例 记法 适用范围 用三个大写字母表示 O B ÐAOB或ÐBOA 任何情况下都适应。表示端点的字母必须写在中间。 用一个大写字母表示 A ÐA 以这个点为顶点的角只有一个。 用数字表示 1 Ð1 任何情况下都适用。但必须在靠近顶点处加上弧线表示角的范围,并注上数字或希腊字母。 用希腊字母表示 a Ða 3、角的度量单位及换算(度”°”、分”¢”、秒”²”)60进制 1°=60¢=3600², 1¢=60²; 1¢=()°, 1²=()¢=()° 4、角的分类 ∠β 锐角 直角 钝角 平角

39、周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360° 5、角的比较方法 (1)度量法 (2)叠合法 6、角的四则运算 角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平分线 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若OB是ÐAOC的平分线,则ÐAOB=ÐBOC=ÐAOC, ÐAOC=2ÐAOB =2ÐBOC). 9、互余、互补 (

40、1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 北 (3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示. 西北 东北 (4)余角的性质:同角(等角)的余角相等; 补角的性质:同角(等角)的补角相等. 北偏西 北偏东 10、方向角 (1)正方向 西 东 (2)南或北写在前面,东或西写在后面 南偏西 南偏西 (北偏东、北偏西、南偏东、南偏西) 西南 东南 南 18 专业知识编辑整理

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服