ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:57.51KB ,
资源ID:10311607      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10311607.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(小学数学六年级上册《鸡兔同笼》.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小学数学六年级上册《鸡兔同笼》.doc

1、 新人教版小学数学六年级上册《鸡兔同笼》教学设计 【教学目标】: 1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、尝试计算、列方程等方法解决鸡兔的数量问题。 3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。 【教学重点】: 体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。 【教学难点】: 渗透假设的思想 【课前准备】:多媒体课件 【教学过程】 一、创设情境,生成问题. (1)师:同学们请看屏幕,今天我

2、们要研究的问题是:——(生齐)鸡兔同笼。(板书:鸡兔同笼)。 (2)课前老师让同学们进行了充分的预习,你知道“鸡兔同笼”是什么意思吗? 师总结:是的,鸡兔同笼是一种数学问题(板书:问题)。早在1500多年以前,我们的老祖宗就研究过这个问题,这个问题就记载在我国的古典数学名著《孙子算经》中。我们大家想不想走进这部数学名著,看看流伟了上千年的趣题是怎么样的? 二、探索交流,解决问题 1、请大家看大屏幕:出示:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 指生读题。你能说说这道题是什么意思吗?(说明:雉指鸡) 2、为了便于同学们寻找解决问题方法,我们先来研究一道数据较小,但又

3、与课本例题不一样的的“鸡兔同笼”问题。出示:笼子里有若干只鸡兔。从上面数,有10个头,从下面数,有32只脚,鸡和兔各有几只? 指生读题,你知道了什么数学信息?脚为什么比头多了呢?很好,两个隐藏着的条件也被我们同学发现了。 大家会解答这个问题吗? 师:看得出,有的同学已经有想法,跃跃欲试了,下面我们就动笔先独立地试一试,如果遇到困难,要充分发挥小组集体的力量,群策群力,以小组为单位合作探究。看你们小组能探究出多少种方法。 相信合作会让大家成功的。 3、学生汇报:师:现在到了我们一起分享研究成果的时候,交流的同学大声说,下面的同学认真听,倾听是分享成功的好方法。 A、列表法: 他们

4、组的想法怎么样 ?好在哪里 ? 像他们这样把所有的可能,采用列表的方法,一一列举出来,并最终能找到答案的方法,在数学上叫列举法。 哪个小组也是用的枚举法 ,但不是像这个组这样一一列举的 ? B、假设法: 谁还有不同的方法?生说,师板书。 假设都看成鸡:8×2=16(条) 26-16=10(条) 4-2=2(条) 兔: 10÷2=5(只) 鸡: 8-5=3(只) 师讲解,课件演示。同桌互相说一说。 还能都假设成什么?(兔)请同学们自己试着做一做。 谁来说一说你是怎样计

5、算的? 都假设成兔子:8×4=32(条) 32-26=6(条) 4-2=2(条) 鸡: 6÷2=3(只) 兔: 8-3=5(只) C、画图法。我像你们这么大的时候,我的老师也教给我这种方法,当时也只是会做,心里却一直不理解,为什么假设全是鸡,求出来的却是兔呢?当我成为老师教学生的时候,我就想有没有更好的办法呢?功夫不负有心人,还真让我想到了,就是画图法,(板书画图法)我们一起来看看。(出示学具)看,我用这 10个圈代表一共的10个头,我们假设都是鸡:多出来的 12只脚怎么办?这个

6、 2表示什么? 把 10个头都看成鸡,这样一共有 20只脚,还剩 12只脚,于是就要把其中的鸡改成兔子,改一只增加 2只脚,要把 12只都安完,要把 6只鸡变成兔。 师:你觉得这种解法怎么样? 师 : 一个简单的画图 ,就能把这道题表示的这么清楚明了 ,看来 ,画图分析也是解决问题的很好的策略。 D、方程法 除了用列表法、假设法,谁还有不同的方法? 方程。如果列方程的话,首先要找等量关系,这道题的等量关系是什么? 鸡的腿+兔的腿=26条 那么就请同学们用列方程的方法试一试。(全班尝试,一名学生板演。) 我们来听听这个同学的想法。 E、古人解决的办法: 师:你想知道

7、古人是如何解答这个问题的吗? (屏幕显示:足数÷2-头数=兔数头数-兔数=鸡数) 师:看起来很复杂的“鸡兔同笼”问题,古人解起来就这么简单啊。咱们用这种方法口算一下上面这道题,结果和我们刚才算的一样吗? 师:老祖宗的方法真是太简单了,其中的道理你能讲清楚吗? 师:这个方法看起来很简单,要理解它还真不容易呢。其实对这个问题,不但咱们中国人有研究,外国人对它也有关注,在匈牙利出生的美国教授波利亚,他讲了一个很有趣的故事解释了这种解法的道理。 草地上有一群鸡兔在玩耍,突然,鸡对兔说:“我们的本领可大了,可以做金鸡独立”。说着每只鸡就抬起一只脚,只用一只脚站着。兔子们见了,也不甘示弱:“这有

8、什么了不起,看看我们兔子作揖。”说完,每只兔就把两只前脚提起来,只留下两只后脚站着。哈哈,这下有趣了,原来的鸡都变成了“独脚鸡”,原来的兔都变成了“双脚兔”。 想一想,现在草地上站立的脚是原来的多少? 生1:现在草地上鸡和兔的头数没变,站立的脚数只剩下原来的一半,也就是“足数÷2”。 生2:现在草地的脚数再和头数比,只有一只兔子多出1只脚,所以,足数÷2-头数=兔的只数。 师:都看明白了吗?你们觉得我们老祖宗的方法怎么样? 生:方法很简单,蕴含的道理很深刻! 师:不过,大家也要小心哦,这种看起来很简单的方法也是有局限的。 4、回顾深入: 比较一下这些不同的解法,(课件出示几种

9、不同方法)你比较喜欢哪种方法?能说说理由吗?生答。 师:看来不同的解法各有各的特点,它们既有联系又有区别,我们应该根据需要灵活地选用。 5 、解答原题: 师:现在我们能用不同的方法来解答这道题,会的水平不一样了!但数学学习讲究的就是深入,如果就此打住那我们今天的探索还是不够深入。数学家在研究一类问题,探讨规律时往往从最简单的开始,这是“化繁为简”的策略。请看这道题,(课件出示:今有鸡兔同笼,上有 35个头,下有 94只脚,鸡和兔各有多少?)你想用什么方法做,快速解答出来。 6、质疑引思。 师:通过刚才的学习,鸡兔同笼问题都会解决吗,有没有什么疑问? 生(都摇头):没有!

10、师:老师有一个疑问,在生活中我们很少看到有人把鸡和兔放在一个笼子里养吧,就是放在一起养,也没谁去数头数脚做这种无聊的事。我们的老祖宗干嘛煞费苦心地研究来研究去的,一千多年过去了,还作为宝物似的流传到今?“鸡兔同笼”有什么独特的魅力吗?”(显示:“鸡兔同笼”有什么独特的魅力?) 二、巩固应用,内化提高 1、初步建模。 (1)龟鹤同游,共有40个头,112只脚,求龟、鹤各有多少只? 师:据资料显示,日本人也研究鸡兔同笼,不过日本怕别的国家的人笑话他们学中国的东西,就把鸡兔同笼变成龟鹤同游。 思考:日本人说的“龟、鹤”和我们说的“鸡、兔”有联系吗? 生:龟和兔一样的,有四只脚。鹤和鸡一样

11、的,都是两只脚。 师:那这道“龟鹤同游”问题会解决? (学生试做后,交流算法) 比较后得出:“龟鹤同游”和“鸡兔同笼”是同一类型的数学问题。 (2)出示:一队猎人一队狗,两列并成一队走。数头一共五十五,数脚共有一百九。 师:老师昨天晚上还看到这样一首儿歌。我们研究了鸡兔同笼、龟鹤同游,也来给这首儿歌取个名字? 生:人狗同行。 师:看了“人狗同行”的儿歌,和“鸡兔同笼”比较,你有什么话想说? 生:我觉得它和鸡兔同笼的问题仍然是一样的。猎人相当于鸡,狗相当于兔。他的这个理解可以吗? 生:可以。 师:虽然把猎人看作鸡有些不雅,但是从研究的角度大家确实是找到了他们数量上的联系。显示

12、猎人——鸡(两只脚)狗——兔(四只脚) 师:回想一下,从“鸡兔同笼”到“龟鹤同游”,再到“人狗同行”,你发现了什么呢?(再次显示:“鸡兔同笼”有什么独特的魅力?) 生1:鸡兔同笼是多方面的。 生2:“鸡兔同笼”可以表示好多种和“鸡兔同笼”相同的情况。 师:是啊,鸡兔同笼不只是代表着鸡兔同笼的问题(老师在课题上加上双引号),它就好像是一个模型!(板书:模型)我们可以找到很多它的影子。想想看,鸡兔同笼问题还可以变化成什么问题? 2、强化体验。 1.拓展。 师:这个信封里放的是5元和2元的钞票,共8张,34元,你能算出信封里5元和2元的钞票各有多少张吗? 师:这个问题和我们研究的鸡

13、兔同笼问题有联系吗? 生:其实这也是鸡兔同笼问题,这里的2元的钞票就相当于鸡有2只脚,而5元的钞票就相当于兔,是五只脚的“怪兔”! 师:(故作神秘状)是这个意思? (课件动态演示:将2元钞票换成鸡,将5元钞票换成五只脚的“怪兔”) 师:同学们真是联想丰富,把兔子给“整成”了五条腿。看来我们的鸡兔同笼问题不仅包括4只脚的兔子,还可以是5只脚的怪兔。你能把这个题目改成“鸡兔同笼”的数学问题吗? (显示:鸡有2脚,怪兔有5脚。共8头,34脚。鸡有多少只?怪兔有多少只?) 看来“鸡兔同笼”中的“鸡”和“兔”也可以转换成好多脚的“怪鸡”和“怪兔”。能联系实际举个例子吗?…… 2.应用。

14、师:让我们带上这样的眼光再到身边去看一看吧。 ①(课件出示:工地运来长度分别为8米和5米的水管25根,用它们一共铺设了173米长的管道。运来两种水管各多少根?)学生抽象变题:怪鸡5脚,怪兔8脚,共25头,173脚。问:怪鸡有多少只?怪兔有多少只? ②(课件出示:刘老师带着41名队员去海陵公园划船,共租了10条船,恰好坐满,每条大船坐6人,每条小船坐4人,问大船和小船各租了几条?) 学生抽象变题:怪鸡4脚,怪兔6脚,共10头,42脚。问:怪鸡?只,怪兔?只。 选做一题,全班讲评,形成全课板书。 四、回顾总结,反思提升 师:经过一节课的研究,现在再来回答这个问题(第三次显示“鸡兔同笼”有什么独特的魅力?),你有什么想说的吗? 师:(对着板书)从一个具体的数学问题出发,研究解法,并上升到一种模型,最后进行广泛的运用,数学就是这样发展起来的。同样,如果我们在学习各种数学问题时能有“模型”的意识,举一反三,能触类旁通,那么你必将会走向数学学习的自由王国。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服