ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:1.11MB ,
资源ID:10308737      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10308737.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(圆锥曲线典型高考题总结.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥曲线典型高考题总结.doc

1、1.(2010辽宁)设椭圆:的左焦点为F,过点F的直线与椭圆相交于A,B两点,直线的倾斜角为60o,.K^S*5U.C# (Ⅰ)求椭圆的离心率; (Ⅱ)如果=,求椭圆的方程. 【解析】设,由题意知<0,>0. (Ⅰ)直线的方程为,其中. 联立得 解得 因为,所以. 即 得离心率 . (Ⅱ)因为,所以. 由得.所以,得a=3,. 椭圆C的方程为 2.(2013安徽)如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°. (Ⅰ)求椭圆的离心率; (Ⅱ)已知△的面积为40,求a, b 的值. 【解析】(Ⅰ)

2、Ⅱ)设;则 在中, 面积 3. (2014新课标1) 已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点. (Ⅰ)求的方程; (Ⅱ)设过点的动直线与相交于两点,当的面积最大时,求的方程. 【解析】 (Ⅱ) . 4.(2010安徽文)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 (1) 求椭圆E的方程; (2) 求∠F1AF2的角平分线所在直线的方程. 解:(1)设椭圆E的方程为 由e=,得=,b2=a2-c2 =3

3、c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为 (Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=(X+2), 即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知, ∠F1AF2的角平分线所在直线的斜率为正数. 设P(x,y)为∠F1AF2的角平分线所在直线上任一点, 则有 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0. 所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0. 5.(2015浙江理)已知椭圆

4、上两个不同的点关于直线对称. (1)求实数的取值范围; (2)求面积的最大值(为坐标原点). 解:(1)由题意知,可设直线的方程为. 由消去,得. 因为直线与椭圆有两个不同的交点, 所以。 ① 将线段中点代入直线方程解得。 ② 由①②得或。 (2)令,则,且到直线的距离为。 设的面积为,所以,当且仅当时,等号成立. 故面积的最大值为. 6.(2016全国1)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (I)证明为定值,并写出点E的轨迹方程; (II)设点E的轨迹为曲线C1,直线l交C1于M,

5、N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. 解:(Ⅰ)因为,,故, 所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). (Ⅱ)当与轴不垂直时,设的方程为,,. 由得. 则,. 所以. 过点且与垂直的直线:,到的距离为,所以 .故四边形的面积 . 可得当与轴不垂直时,四边形面积的取值范围为. 当与轴垂直时,其方程为,,,四边形的面积为12. 综上,四边形面积的取值范围为. 7.(2014安徽)设,分别是椭圆:的左、右焦点,过点 的直线交椭圆于两点, (Ⅰ)若的周长为16,求;

6、 (Ⅱ)若,求椭圆的离心率. 【解析】:(Ⅰ)由得。 因为的周长为16,所以由椭圆定义可得 故。 (Ⅱ)设,则且,由椭圆定义可得 在中,由余弦定理可得 即 化简可得,而,故 于是有, 因此,可得 故为等腰直角三角形.从而,所以椭圆的离心率. 8.(2015安徽)设椭圆的方程为,点为坐标原点,点的坐标为,点的坐标为,点在线段上,满足,直线的斜率为. (Ⅰ)求的离心率; (Ⅱ)设点的坐标为,为线段的中点,点关于直线的对称点的纵坐标为,求的方程. 【解析】(1)由题设条件知,点的坐标为,又,从而,进而得,故. (2)由题设条件和(I)的计算结果可得,直线的方程为

7、点的坐标为,设点关于直线的对称点的坐标为,则线段的中点的坐标为.又点在直线上,且,从而有,解得,所以, 故椭圆的方程为. 9.(2016全国3)已知抛物线C: 的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点. (I)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. 解:由题设.设,则,且 . 记过两点的直线为,则的方程为. .....3分 (Ⅰ)由于在线段上,故. 记的斜率为,的斜率为,则 . 所以. ......5分 (Ⅱ)设与轴的交点为, 则.

8、由题设可得,所以(舍去),. 设满足条件的的中点为. 当与轴不垂直时,由可得. 而,所以. 当与轴垂直时,与重合.所以,所求轨迹方程为. 10.已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。 解:设,为椭圆上关于直线的对称两点,为弦的中点,则, 两式相减得, 即 ,,   这就是弦中点轨迹方程。 它与直线的交点必须在椭圆内 联立,得 则必须满足, 即,解得 11. 已知是椭圆不垂直于轴的任意一条弦,是的中点,为椭圆的中心.求证:直线和直线的斜率之积是定值. 证明 设且, 则,(1),(2) 得:, ,. 又,,(定值)

9、 12.已知,椭圆C过点A (1,),两个焦点为(-1,0),(1,0). (1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值. 【答案】(1);(2). 试题分析:(1)由c=1,利用待定系数法设椭圆方程为,代入A可得椭圆方程为;(2)直线AE方程为,代入消去得,设E(,),F(,)则由根与系数的关系得,,直线AF的斜率与AE的斜率互为相反数,在上式中以-k代替k,可得,,故直线EF的斜率. 试题解析:(1)由题意,c=1,可设椭圆方程为.因为A在椭圆上,所以,解得=3,=(舍去).所以

10、椭圆方程为. 13.(2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且。求四边形面积的最小值。 解  由方程可知,,则。 设直线与轴的夹角为,因为,所以直线与轴   Q P N M F O 的夹角为。代入弦长公式得,,。故四边形的面积为,。 所以四边形面积的最小值为。 14.(全国卷II)、、、四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最小值和最大值. 解:如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQ⊥MN,直线PQ、NM中至少

11、有一条存在斜率,不妨设PQ的斜率为K,又PQ过点F(0,1),故PQ的方程为=+1 将此式代入椭圆方程得(2+)+2-1=0 设P、Q两点的坐标分别为(,),(,),则 从而 亦即 (1)当≠0时,MN的斜率为-,同上可推得 故四边形面积 令=得 ∵=≥2 当=±1时=2,S=且S是以为自变量的增函数 ∴ ②当=0时,MN为椭圆长轴,|MN|=2,|PQ|=。∴S=|PQ||MN|=2 综合①②知四边形PMQN的最大值为2,最小值为。 15.(2013全国2)平面直角坐标系xOy中,过椭圆M: =1(a > b > 0)的右焦点的直线x + y - = 0交M

12、于A,B两点,P为AB的中点,且OP的斜率为 . (Ι)求M的方程 (Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD的面积最大值. 【解】(Ⅰ)设A (x 1, y 1) ,B (x 2, y 2),P (x 0, y 0) ⇒⇒ = - ⇒ kAB = - OP的斜率为 ⇒ = 2,直线x + y - = 0的斜率为-1 ⇒ kAB =-1 ⇒-1= - ⇒ a2 = 2b2 ……① 由题意知直线x + y - = 0与x轴的交点F(,0)是椭圆的右焦点,则才c = ⇒a2 - b2 = 3 ……② 联立解得①、②解得a2 = 6,

13、b2 = 3 所以M的方程为:+ = 1 (Ⅱ)联立方程组,解得A(, - )、B(0, ),求得| AB | = 依题意可设直线CD的方程为:y = x + m CD与线段AB相交⇒ - < m < 联立方程组 消去x得:3x 2 + 4mx +2m2 - 6 = 0 …… (*) 设C (x 3, y 3),D (x 4, y 4),则| CD |2 = 2(x 3 - x 4)2 = 2[(x 3 + x 4)2 - 4x 3x 4]= (9 - m2) 四边形ACBD的面积S = | AB |• | CD | = 当n = 0时,S最大,最大值为. 所以四边形ACBD的面积最大值为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服