ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:279KB ,
资源ID:10307675      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10307675.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(07离散型随机变量的方差.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

07离散型随机变量的方差.doc

1、2. 3.2离散型随机变量的方差 教学目标: 知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的方差、标准差 教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 教具准备:多媒体、实物投影仪 。 教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若

2、ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。 授课类型:新授课 课时安排3课时 教 具:多媒体、实物投影仪 内容分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+ 叫

3、做这组数据的方差 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出

4、 5. 分布列: ξ x1 x2 … xi … P P1 P2 … Pi … 6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1. 7.二项分布:ξ~B(n,p),并记=b(k;n,p). ξ 0 1 … k … n P … … 8.几何分布: g(k,p)= ,其中k=0,1,2,…, . ξ 1 2 3 … k … P … … 9.数学期望: 一般地,若离散型随机变量ξ的概率分布为 ξ x1 x2 … xn … P p1 p2 … pn

5、 … 则称 …… 为ξ的数学期望,简称期望.   10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值 12. 期望的一个性质: 13.若ξB(n,p),则Eξ=np 二、讲解新课: 1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么, =++…++… 称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望. 2. 标准差:的算术平方根叫做随机

6、变量ξ的标准差,记作. 3.方差的性质:(1);(2); (3)若ξ~B(n,p),则np(1-p) 4.其它: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度; ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例: 例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 解:抛掷散子所得点数X 的分布列为 ξ 1 2 3 4 5 6 P 从而 ; .

7、 例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息: 甲单位不同职位月工资X1/元 1200 1400 1600 1800 获得相应职位的概率P1 0.4 0.3 0.2 0.1 乙单位不同职位月工资X2/元 1000 1400 1800 2000 获得相应职位的概率P2 0.4 0.3 0.2 0.1 根据工资待遇的差异情况,你愿意选择哪家单位? 解:根据月工资的分布列,利用计算器可算得 EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 , DX1 = (1200-14

8、00) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ; EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 , DX2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 . 因为EX1 =EX2, DX1

9、的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位. 例3.设随机变量ξ的分布列为 ξ 1 2 … n P … 求Dξ 解:(略), 例4.已知离散型随机变量的概率分布为 1 2 3 4 5 6 7 P 离散型随机变量的概率分布为 3.7 3.8 3.9 4 4.1 4.2 4.3 P 求这两个随机变量期望、均方差与标准差 解:; ; ; =0.04, . 点评:本

10、题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中. =2,=0.02,可以看出这两个随机变量取值与其期望值的偏差 例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平 解: +(10-9); 同理有 由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数

11、多些. 点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况 例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A机床 B机床 次品数ξ1 0 1 2 3 次品数ξ1 0 1 2 3 概率P 0.7 0.2 0.06 0.04 概率P 0.8 0.06 0.04 0.10 问哪一台机床加工质量较好 解: Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44, Eξ

12、2=0×0.8+1×0.06+2×0.04+3×0.10=0.44. 它们的期望相同,再比较它们的方差 Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2 ×0.06+(3-0.44)2×0.04=0.6064, Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264. ∴Dξ1< Dξ2 故A机床加工较稳定、质量较好. 四、课堂练习: 1 .已知,则的值分别是( ) A.;  B.;  C.;  D. 答案:1.D 2. 一

13、盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望. 分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件. 解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当ξ=0时,即第一次取得正品,试验停止,则 P(ξ=0)= 当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则 P(ξ=1)= 当ξ=2时,即第一

14、二次取出次品,第三次取得正品,试验停止,则 P(ξ=2)= 当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)= 所以,Eξ= 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ 分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直

15、接进行计算 解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98 4. 设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论 证明:因为ξ所有可能取的值为0,1且P(ξ=0

16、1-p,P(ξ=1)=p, 所以,Eξ=0×(1-p)+1×p=p 则 Dξ=(0-p)2×(1-p)+(1-p) 2×p=p(1-p) 5. 有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下: ξA 110 120 125 130 135 ξB 100 115 125 130 145 P 0.1 0.2 0.4 0.1 0.2 P 0.1 0.2 0.4 0.1 0.2 其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好 分析

17、 两个随机变量ξA和ξB&都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性 解:先比较ξA与ξB的期望值,因为 EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125. 所以,它们的期望相同.再比较它们的方差

18、.因为 DξA=(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50, DξB=(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165. 所以,DξA < DξB.因此,A种钢筋质量较好 6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元? 分析:这是同学们身边常遇到的现实问题,比如福利彩

19、票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用 解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题 意,可得ξ的分布列为 ξ 0 5 25 100 P 答:一张彩票的合理价格是0.2元. 五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、

20、若ξ~B(n,p),则不必写出分布列,直接用公式计算即可. ⑵对于两个随机变量和,在和相等或很接近时,比较和 ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要 六、课后作业: P69练习1,2,3 P69 A组4 B组1,2 1.设~B(n、p)且E=12 D=4,求n、p 解:由二次分布的期望与方差性质可知E=np D= np(1-p) ∴ ∴ 2.已知随机变量服从二项分布即~B(6、)求b (2;6,) 解:p(=2)=c62()2()4 3.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和 的分布列

21、如下:(注得分越大,水平越高) 1 2 3 p a 0.1 0.6 1 2 3 p 0.3 b 0.3 试分析甲、乙技术状况 解:由0.1+0.6+a+1a=0.3 0.3+0.3+b=1a=0.4 ∴E=2.3 , E=2.0 D=0.81 , D=0.6 七、板书设计(略) 八、教学反思: ⑴求离散型随机变量ξ的方差、标准差的步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出Eξ; ④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可. ⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服