1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,模糊聚类分析,Fuzzy Clustering Analysis,零、关系与经典等价关系,方以類聚,物以群分,吉凶生矣。,易,繫辭上,聚类是一个古老的问题,它伴随着人类社会的产生和发展而不断深化。人类要认识世界就必须区别不同的事物并认识事物间的相似性。,按确定的标准对客观事物进行分类的数学方法称为聚类分析。,聚类分析的应用,市场营销,金融业(客户分类),生物学(物种分类,种子筛选,,DNA,分类),图像处理(),模式识别(地质勘探,医疗诊断(中医),军事领域),聚类关系,以木橫持門戶也。,说文,从門,聲。古
2、還切。,關,闭,合拢:闭。,园日涉以成趣,门虽设而常关。,晋,陶渊明,归去来兮辞,2.,拘禁:押。禁。,3.,古代在险要地方或国界设立的守卫处所:卡,qi,,嘉峪。,尝以十倍之地,百万之师,叩关而攻秦。,汉,贾谊,过秦论,4.,征收进出口货税的机构:海。税。,5.,重要的转折点,不易度过的时机:节。难。年。,6.,牵连,联属:连。联。心。注。于。有。,7.,旧指发给或支领薪饷:饷。,8.,姓。,行隔一路曰关,林应龙,适情录,1.,有联属关系的:数,世。,2.,高等学校中教学单位:中文,department,。,3.,关联:干。关,relate to,。,4.,联结,栓:名誉所。,5.,牵挂:恋
3、念。,6.,是:确实情。,7.,从井下把土上来。,8.,约束,;,羁绊,restrain,愚士系俗兮,窘若囚拘。,汉,贾谊,鹏鸟赋,9.,(,j,)结,扣。,tie;fasten,Claudius Ptolemy,(约,85165,),Optics,公元,140,年。,Willebrord,Snell,(,15801626,),公元,1621,年。,An object(in this case a pencil)part immersed in water looks bent due to refraction:the light waves from X change direction
4、 and so seem to originate at Y.,,en.wikipedia.org/wiki/Refraction,食物链构成的“关系”。,水葫芦原产于南美,在原产地巴西由于受生物天敌的控制,仅以一种观赏性,种群,零散分布于水体,,1844,年在美国的博览会上曾被喻为“美化,世界的淡紫色花冠”。,19,世纪期间引入,东南亚,,,1901,年作为花卉引入中国,,30,年代作为畜禽饲料引入中国内地各省,并作为观赏和净化水质的植物推广种植,后逃逸为野生。,2012,年,1,月,31,日,福建宁德市古田县水口镇湾口村段,2012,年,7,月,7,日,广西柳州的张先生在柳江河遭遇,3,条
5、食人鱼袭击,食人鱼(又名食人鲳)栖息在主流、较大支流,河宽甚广、水流较湍急处。在巴西的亚马逊河流域,食人鱼被列入当地最危险的四种水族,生物,之首。,经典分类等价关系,Mona Lisa,or,La,Gioconda,(15031505/1507),Louvre,Paris,France,孔子,公元前,551479,爱因斯坦,1879-1955,老子,公元前,571471,武则天,624,年,705,年,居里夫人,1867-1934,阿基米德,约前,287212,年,达,芬奇,1452-1519,伽利略,1564-1642,牛顿,1643-1727,吴文俊,1919,吾未见好德如好色者也。,天下
6、皆知美之为美,斯恶已;皆知上之为善,斯不善已。,给我一个支点和一根足够长的杠杆,我就能撬动整个地球。,勤劳一日,可得一夜安眠,勤劳一生,可得幸福长眠。,欲安其家,先安其国。,弱者坐待时机;强者制造时机。,追求科学需要特殊的勇敢。,我不知道世人怎样看我,但我自己以为我不过像一个在海边玩耍的孩子,不时为发现比寻常更为美丽的一块卵石或一片贝壳而沾沾自喜,至于展现在我面前的浩翰的真理海洋,却全然没有发现,我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。,孔子、老子、,阿基米德,公元前生,11500,生,1500,后生,达,.,芬奇 武则天,伽利略、牛顿、居里夫人、爱因斯坦、吴文俊,Art-mod
7、el-data,1.aggcacggaaaaacgggaataacggaggaggacttggcacggcattacacggaggacgaggtaaaggaggcttgtctacggccggaagtgaagggggatatgaccgcttgg,2.cggaggacaaacgggatggcggtattggaggtggcggactgttcggggaattattcggtttaaacgggacaaggaaggcggctggaacaaccggacggtggcagcaaagga,3.gggacggatacggattctggccacggacggaaaggaggacacggcggacatacacggcggca
8、acggacggaacggaggaaggagggcggcaatcggtacggaggcggcgga,4.atggataacggaaacaaaccagacaaacttcggtagaaatacagaagcttagatgcatatgttttttaaataaaatttgtattattatggtatcataaaaaaaggttgcga,5.cggctggcggacaacggactggcggattccaaaaacggaggaggcggacggaggctacaccaccgtttcggcggaaaggcggagggctggcaggaggctcattacggggag,6.atggaaaattttcggaaagg
9、cggcaggcaggaggcaaaggcggaaaggaaggaaacggcggatatttcggaagtggatattaggagggcggaataaaggaacggcggcaca,7.atgggattattgaatggcggaggaagatccggaataaaatatggcggaaagaacttgttttcggaaatggaaaaaggactaggaatcggcggcaggaaggatatggaggcg,8.atggccgatcggcttaggctggaaggaacaaataggcggaattaaggaaggcgttctcgcttttcgacaaggaggcggaccataggaggcgg
10、attaggaacggttatgagg,9.atggcggaaaaaggaaatgtttggcatcggcgggctccggcaactggaggttcggccatggaggcgaaaatcgtgggcggcggcagcgctggccggagtttgaggagcgcg,10.tggccgcggaggggcccgtcgggcgcggatttctacaagggcttcctgttaaggaggtggcatccaggcgtcgcacgctcggcgcggcaggaggcacgcgggaaaaaacg,11.gttagatttaacgttttttatggaatttatggaattataaatttaaaaa
11、tttatattttttaggtaagtaatccaacgtttttattactttttaaaattaaatatttatt,12.gtttaattactttatcatttaatttaggttttaattttaaatttaatttaggtaagatgaatttggttttttttaaggtagttatttaattatcgttaaggaaagttaaa,13.gtattacaggcagaccttatttaggttattattattatttggattttttttttttttttttttaagttaaccgaattattttctttaaagacgttacttaatgtcaatgc,14.gttagtc
12、ttttttagattaaattattagattatgcagtttttttacataagaaaatttttttttcggagttcatattctaatctgtctttattaaatcttagagatatta,15.gtattatatttttttatttttattattttagaatataatttgaggtatgtgtttaaaaaaaatttttttttttttttttttttttttttttttaaaatttataaatttaa,16.gttatttttaaatttaattttaattttaaaatacaaaatttttactttctaaaattggtctctggatcgataatgtaaa
13、cttattgaatctatagaattacattattgat,17.gtatgtctatttcacggaagaatgcaccactatatgatttgaaattatctatggctaaaaaccctcagtaaaatcaatccctaaacccttaaaaaacggcggcctatccc,18.gttaattatttattccttacgggcaattaattatttattacggttttatttacaattttttttttttgtcctatagagaaattacttacaaaacgttattttacatactt,19.gttacattatttattattatccgttatcgataatttt
14、ttacctcttttttcgctgagtttttattcttactttttttcttctttatataggatctcatttaatatcttaa,20.gtatttaactctctttactttttttttcactctctacattttcatcttctaaaactgtttgatttaaacttttgtttctttaaggattttttttacttatcctctgttat,11:,agatctggaaatggaccccaactgctcctgctccaccggtaagagaatacccagttaggaccgcagagacttcccgcagttgtagaggatgtagtgtagaatcttcgc
15、gggaataatgccttcgttggggattcattctagttctttttagcgtccccctttgcaagcacctccatctattcttgcagtattaatattgtccgaacgatcctttgtcggggttgagggcagtatttaggcgcacaaatgtcccgctcctgatcaaccaggtagtgaggacatctgggtcgagctccaggcactactaaacttttatgaattgcctagactaggagagaagtgagggacttctgtgtcttggaccaaagaccaagccctaccctaccccgtgagaagtgggggctaggc
16、ttcctggaatcctgagcaggatttagtgaactgagctcggcacgtgtgtgggcctgtgatcttgcaagtctctctactgtcttctttctcctccgcagcagcacctgcacctgctccagttcctgtggctgcaaagactgcaagtgcacctcctgcaagaagagtgagtgtggagggatacctggggtggtggctaaggtttggcgggaacacccacaggcccgacagatcccagggccctcccttgtaacgtgtcaggccagagctgttctaagacacacacacccccgcttgttgggg
17、caagaaacaggtcttccgtcaggtctgtgtgacaggtcttaggactccagctttgacctcttcctctccctgttctagctgctgctcctgctgcccagtgggctgctccaagtgtgcccagggctgcgtctgcaaaggggcatcggacaagtgcacgtgctgtgcctaatgggaggacgatgccgcctcccacgtgtaaatagtgcccggagctctaccctgtttactaagtccccttttctacgaaatatgtgaataaaaaaccaatgtgattctaactttggttttctttgtgtgact
18、tggaaataaggaagtggggtgacagattgacttaatgagattgcaaggattggttctggagttgttggtccctttacctcttcaccctctgccccagaggagggggaagtgtcttagggaaagatcaattatgtcatgagcttcctcttaatggaagacgagcagctgtgtgccggatcagactctctctctctctctctctctctctctctctctctctctctctgtgtgtgtgtgtgtgtgtgtgtgtgtgtgcgcgcgcgcgcgcgcggccatgcgtgcgtgtgcagagctctagca
19、agtgctcacatttgcttggcatgtggaggctgagatggacattgggaatcttcctctttcactttctgccccccaccttgagacaggtttatctgtgtagctttggaggctgtcttgaaactgactctgtagaccagactggcctcagactcacagagatccgcttgcttctgccctacaaatgctgggattaaaggcttgcaccaccattgactgggcctctaatcttactttttgaaatgagatct,数学,上,,二元关系,(或简称,关系,)用于讨论两种物件的连系。诸如,算术,中的,大于,及,等于,,,
20、几何学,中的,相似,,或,集合论,中的,为,.,之元素,或,为,.,之子集,。,集合,到集合 上的,二元关系,是 的一个子集 。,若(,x,y,)属于,R,,则称,x,与,y,有关系,R,,记作,xRy,。,特别地,,X,到,X,的关系,R,称为是,X,上的关系,。,X,上的关系,R,称为是,等价关系,,若他它满足:,(,1,)(,自反性,,Reflectivity,)对于任何,x,,有,xRx,;,(,2,)(,对称性,,Symmetry,)对于任何,x,,,y,若,xRy,,则,yRx,;,(,3,)(,传递性,,Transitivity,)若,xRy,且,yRz,,则,xRz,。,设,X
21、上的关系,R,称为是,等价关系,,则对应划分,20,年后的今天是星期几?,关系的矩阵,孔 老 阿 达 吴 武 居里 伽 牛顿 爱,关系的复合,祖孙,=,父子,父子;婆媳,=,母子,夫妻。,R,为,X,到,Y,的关系,,Q,为,Y,到,Z,的关系,则,Q,R,定义为,X,到,Z,的关系:,一、模糊集与模糊等价关系,模糊集的概念(,Zadeh,,,1965,)起源。,X,是一个集合,称之为论域。考虑下列命题:,是一个大数;,这朵玫瑰是红的;,所有鸟都会飞。,第一个断言,预先需假设存在一个大数集合。问题是,边界放于何处。,三分法:成员可能是一个成员,非成员或,边界成员,。,例如,断定红,就不得不在
22、下述意义的基础上进行定义:“在波长为,580.27mu,和,702.35mu,之间的单色关照射下,从均匀的反射面上,一个红色物体是不可区分的。”,Zadeh,引入了从非隶属到隶属的逐渐过渡来取代一个分明边界。诸如“大”这样一个不精确的、模糊断言的物体,被认为在论域(自然数集合)上构成了一个模糊集合;从非隶属到隶属的过渡是渐渐的,而不是突然的。表明某个数比另一个数更优先具有“大数”的标签是有意义的。,2.,关于隶属函数,于内容有关;,与不同观测者有关;,一个绝对,确切的隶属函数并不存在。,3.,模糊等价关系,寒,热,虚,实,自汗 恶寒 咳嗽 喘,自汗,恶寒,咳嗽,喘,肺 心,模糊关系的复合,寒,
23、热,虚,实,自汗 恶寒 咳嗽 喘,自汗,恶寒,咳嗽,喘,肺 心,寒,自汗,恶寒,咳嗽,喘,肺,寒,热,虚,实,肺 心,称,R,是,X,上的,模糊等价关系(,相应的矩阵,称为,Fuzzy,等价矩阵),,若,模糊等价关系的定义,二、基于,Fuzzy,等价关系的,Fuzzy,聚类,必为,Fuzzy,等价矩阵,依它为基础聚类即可!,性味归经:苦,寒。归肺、胆、脾、大肠、小肠经。,清肌退热,柴胡最佳,然无黄芩不能凉肌达表。,本草汇言,性味归经:性微寒、味苦、辛、归,肝经,、,胆经,。,功能:透表泄热,疏肝解郁,升举阳气。,0.8,1,0,0,0,0,0,0,0,0.5,0,0,0.5,0.5,-1,0,
24、1,0,0,-1,0,1,1,0,0,0,0,0,0.5,0.5,0,1,1,0,1,0.5,-1,1,0.5,0.5,1,0.5,0.5,0,0.5,-1,-1,0.5,-1,0,1.5,1,1,1,1,0,0,1.5,0.5,0.5,0.5,0.5,0,0,0.5,0,1,1,0,1,0,1,0,0.5,0.5,0,0.5,0,1.5,1.5,1,1.5,1.5,1.5,0,1.5,1.5,0.5,1.5,1.5,1.5,1.5,0.5,0,1,0,0,0,1.5,1,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
25、0,0,0,0,0,0,1,0,0,0,0,1,0.6667,0.908,0.7161,0.6262,0.5611,0.0687,0.6667,1,0.7515,0.5371,0.9393,0.6099,0.1374,0.908,0.7515,1,0.8408,0.7059,0.7334,0.0645,0.7161,0.5371,0.8408,1,0.5045,0.7076,0.4059,0.6262,0.9393,0.7059,0.5045,1,0.5729,0.1291,0.5611,0.6099,0.7334,0.7076,0.5729,1,0.4023,0.0687,0.1374,0.
26、0645,0.4059,0.1291,0.4023,1,1,0.4059,0.4059,0.4059,0.4059,0.4059,0.4059,0.4059,1,0.7334,0.7334,0.7334,0.7334,0.7334,0.4059,0.7334,1,0.7515,0.7515,0.9393,0.7515,0.4059,0.7334,0.7515,1,0.8408,0.7515,0.8408,0.4059,0.7334,0.7515,0.8408,1,0.7515,0.908,0.4059,0.7334,0.9393,0.7515,0.7515,1,0.7515,0.4059,0.
27、7334,0.7515,0.8408,0.908,0.7515,1,为,Fuzzy,等价矩阵(称为,R,的,传递闭包,),据此聚类!,1,0.4059,0.4059,0.4059,0.4059,0.4059,0.4059,0.4059,1,0.7334,0.7334,0.7334,0.7334,0.7334,0.4059,0.7334,1,0.7515,0.7515,0.9393,0.7515,0.4059,0.7334,0.7515,1,0.8408,0.7515,0.8408,0.4059,0.7334,0.7515,0.8408,1,0.7515,0.908,0.4059,0.7334,
28、0.9393,0.7515,0.7515,1,0.7515,0.4059,0.7334,0.7515,0.8408,0.908,0.7515,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,柴胡,黄岑,半夏、生姜,人参,甘草、大枣,动态聚类图,三、基于,Fuzzy,划分的,Fuzzy,聚类分析(,FCM,),孔子、老子、,阿基米德,公元前生,11500,生,1500,后生,达,.,芬奇 武则天,伽利略、牛顿、居里夫人、爱因斯坦、吴文俊,1.cr
29、isp c-partitions and fuzzy c-partitions,欲将数据集,分为,c,类,使得,X,中的任意样本,必须完全属,于某一类,以及每一类至少包含一个样本。这种问题的结果可由下列矩阵表示,称,矩阵,D,其为,X,的,硬,c-,划分,(,crisp c-partitions,),.,孔 老 阿 达 吴 武 居里 伽 牛顿 爱,Fuzzy c-partitions,称矩阵,D,其为,X,的,模糊,c-,划分,(,fuzzy c-partitions,),.,给定,c,和,n,两个正整数,,cn,。矩阵,满足,X,的,模糊,c-,划分,(,fuzzy c-partitions
30、给出,X,上的,c,个模糊集,.,X,的,模糊,c-,划分,(,fuzzy c-partitions,)给出,X,上的,c,个模糊集,.,2.,基于,fuzzy c-partitions,的聚类,孔 老 阿 达 吴 武 居里 伽 牛顿 爱,类 聚类中心,95,89,87,80,82,79,73,65,86,76,90,86,76,90,83,96,98,90,87,86,68,71,89,58,79,75,67,52,74,73,97,90,98,97,92,100,92,95,99,85,82,84,93,75,87,85,76,70,70,76,ISODATA,Iterative Self-Organizing Data Analysis Technique,考虑(,lagrange,乘子法),求偏导数,有,取得最小值的必要条件,ISODATA,算法设计,U0=,rand(C,N,);,%,随机矩阵,U0=U0./(ones(C,1)*sum(U0);,%,随机矩阵列归一,可得初始化划分矩阵,步骤,1,任意指定,Fuzzy,划分矩阵,U0,步骤,2,根据上式计算,c,个聚类中心,Um=U0.M;P=Um*Data./(ones(S,1)*,sum(Um,);,步骤,3,计算目标函数的值,J,(,D,V,),步骤,4,计算新的,U,并返回步骤,2,
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818