ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:551.50KB ,
资源ID:10247694      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10247694.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(倾向值匹配法(PSM).ppt)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

倾向值匹配法(PSM).ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,倾向值匹配法(,PSM,),1,Q,:为什么要使用,PSM,?,A,:解决样本选择偏误带来的内生性问题,例:上北大有助于提高收入吗?,样本选择偏误:考上北大的孩子本身就很出色(聪明、有毅力、能力强,),解决方法:样本配对,2,配对方法,同行业(一维配对),同行业、规模相当(二维配对),同行业、规模相当、股权结构相当、,(多维配对)?,PSM,:把多个维度的信息浓缩成一个(降维:多维到一维),3,配对过程中的两个核心问题

2、1,),Q1,:哪个样本更好一些?,A1:Sample2,较好:比较容易满足共同支撑假设(,common support assumption,),4,配对过程中的两个核心问题(,2,),Q2,:,stu c1,c2,c3,三人中,谁是,stu PK,的最佳配对对象?,A2,:,stu c3,是最佳配对对象,比较容易满足平行假设(,balancing assumption,),5,ATT,(,Average Treatment Effect on the Treated,)平均处理效应的衡量,运用得分进行样本匹配并比较,估计出,ATT,值。,ATT=EY(1)-Y(0)|T=1,Y(1):

3、Stu PK,上北大后的年薪,Y(0):Stu PK,假如不上北大的年薪,可观测数据,不可观测数据,采用配对者的收入来代替,ATT=12W-9W=3W,6,实例介绍,7,实例介绍,研究问题:培训对工资的效应,基本思想:分析接受培训行为与不接受培训行为在工资表现上的差异。但是,现实,可以观测到的,是处理组接受培训的事实,而如果处理组没有接受培训会怎么样是,不可观测的,,这种状态称为反事实。匹配法就是为了解决这种不可观测的事实的方法。,8,实例介绍,分组:在倾向值匹配法中,根据处理指示变量将样本分为两个组。,处理组,,在本例中就是在,NSW,(国家支持工作示范项目)实施后接受培训的组;,控制组,,

4、在本例中就是在,NSW,实施后不接受培训的组。,研究目的:通过对处理组和对照组的匹配,在其他条件完全相同的情况下,通过接受培训的组(处理组)与不接受培训的组(控制组)在工资表现上的差异来判断接受培训的行为与工资之间的因果关系。,9,变量定义,10,变量定义,11,倾向打分,12,OLS,回归结果,工资的变化到底是来自个体的异质性,性还是培训?,13,倾向打分,1.,设定宏变量,(1),设定宏变量,breps,表示重复抽样,200,次,命令:,global breps 200,(2),设定宏变量,x,,表示,age agesq educ educsq married black hisp re7

5、4 re75 re74sq re75sq u74black,命令:,global x age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black,14,倾向打分,2.,通过,logit,模型进行倾向打分,命令:,pscore treat$x,pscore(mypscore)blockid(myblock)comsup numblo(5)level(0.05)logit,注,:$,表示引用宏变量,15,pscore,结果,16,倾向值分布,17,倾向值分布,18,block,中样本的分布,19,block,中

6、的描述性统计,20,运用得分进行样本匹配并比较,21,方法一:最邻近方法(,nearest neighbor matching,),含义:最邻近匹配法是最常用的一种匹配方法,它把控制组中找到的与处理组个体倾向得分差异最小的个体,作为自己的比较对象。,优点:按处理个体找控制个体,所有处理个体都会配对成功,处理组的信息得以充分使用。,缺点:由于不舍弃任何一个处理组,很可能有些配对组的倾向得分差距很大,也将其配对,导致配对质量不高,而处理效应,ATT,的结果中也会包含这一差距,使得,ATT,精确度下降。,22,方法一:最邻近方法(,nearest neighbor matching,),命令,set

7、 seed 10101,(产生随机数种子),attnd re78 treat$x,comsup boot reps($breps)dots logit,23,方法一:最邻近方法(,nearest neighbor matching,),24,方法二:半径匹配法(,radius matching,),半径匹配法是事先设定半径,找到所有设定半径范围内的单位圆中的控制样本,半径取值为正。随着半径的降低,匹配的要求越来越严。,25,方法二:半径匹配法(,radius matching,),命令,set seed 10101,attr re78 treat$x,comsup boot reps($bre

8、ps)dots logit radius(0.001),26,方法二:半径匹配法(,radius matching,),27,方法三:分层匹配法(,stratification matching,),内容:分层匹配法是根据估计的倾向得分将全部样本分块,使得每块的平均倾向得分在处理组和控制组中相等。,优点:,Cochrane,Chambers,(,1965,)指出五个区就可以消除,95%,的与协变量相关的偏差。这个方法考虑到了样本的分层问题或聚类问题。就是假定:每一层内的个体样本具有相关性,而各层之间的样本不具有相关性。,缺点:如果在每个区内找不到对照个体,那么这类个体的信息,会丢弃不用。总体配

9、对的数量减少。,28,方法三:分层匹配法(,stratification matching,),命令,set seed 10101,atts re78 treat,pscore(mypscore)blockid(myblock)comsup boot reps($breps)dots,29,方法三:分层匹配法(,stratification matching,),30,方法四:核匹配法(,kernel matching,),核匹配是构造一个虚拟对象来匹配处理组,构造的原则是对现有的控制变量做权重平均,权重的取值与处理组、控制组,PS,值差距呈反向相关关系。,31,方法四:核匹配法(,kerne

10、l matching,),命令,set seed 10101,attk re78 treat$x,comsup boot reps($breps)dots logit,32,方法四:核匹配法(,kernel matching,),33,psmatch2,34,匹配变量的筛选,1.,设定宏变量,设定宏变量,x,,表示,age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black,命令:,global x age agesq educ educsq married black hisp re74 re75 re7

11、4sq re75sq u74black,35,匹配变量的筛选,2.,初步设定,logit treat$x,36,匹配变量的筛选,3.,逐步回归,stepwise,pr(0.1):logit treat$x,37,ps,值的计算,psmatch2 treat$x,out(re78),倾向得分的含义是,在给定,X,的情况下,样本处理的概率值。利用,logit,模型估计样本处理的概率值。概率表示如下:,P(x)=PrD=1|X=ED|X,38,匹配处理组,最近邻匹配,命令:,psmatch2 treat$x,(,if soe=1,),out(re78)neighbor(2)ate,半径匹配,命令:,

12、psmatch2 treat$x,out(re78)ate radius caliper(0.01),核匹配,命令:,psmatch2 treat$x,out(re78)ate kernel,39,匹配处理组,满足两个假设:,A,共同支撑假设,B,平行假设,40,ATT,(平均处理效应的衡量),以半径匹配为例:,psmatch2 treat$x,out(re78)ate radius caliper(0.01),1,2,3,1,、处理组平均效应(,ATT,),2,、控制组平均效应(,ATU,),3,、总体平均效应(,ATE,),41,ATT,(平均处理效应的衡量),匹配前后变量的差异对比,命令

13、pstest re78$x,(,pstest re78$x,both graph,),42,匹配前后密度函数图,twoway(kdensity _ps if _treat=1,legend(label(1 Treat)(kdensity _ps if(_wei!=1&_wei!=.),legend(label(2 Control),xtitle(Pscore)title(After Matching),twoway(kdensity _ps if _treat=1,legend(label(1 Treat)(kdensity _ps if _treat=0,legend(label(2 Control),xtitle(Pscore)title(Before Matching),43,运用,bootstrap,获得,ATT,标准误,命令:,bootstrap,reps(#):psmatch2 treat$x,out(re78),在统计分析中,样本较少,采用,bootstrap,,可以减少小样本偏误。,步骤:首先,从原始样本中可重复地随机抽取,n,个观察值,得到经验样本;然后采用,PSM,计算改经验样本的平均处理效果,ATT,;将第一步和第二步重复进行,#,次,得出,#,个,ATT,值;计算,#,个,ATT,值的标准差。,44,核匹配的,Bootstrap,检验,45,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服