ImageVerifierCode 换一换
格式:PPT , 页数:85 ,大小:7.51MB ,
资源ID:10247431      下载积分:18 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10247431.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(meanshift算法详解.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

meanshift算法详解.ppt

1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Mean Shift,Theory and Applications,Yaron Ukrainitz&Bernard Sarel,1,Agenda,Mean Shift Theory,What is Mean Shift?,Density Estimation Methods,Deriving the Mean Shift,Mean shift properti

2、es,Applications,Clustering,Discontinuity Preserving Smoothing,Object Contour Detection,Segmentation,Object Tracking,2,Mean Shift Theory,3,Intuitive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,4,Intuitive

3、Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,5,Intuitive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,6,Intuit

4、ive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,7,Intuitive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,8,In

5、tuitive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Mean Shift,vector,Objective,:Find the densest region,9,Intuitive Description,Distribution of identical billiard balls,Region of,interest,Center of,mass,Objective,:Find the densest region,10,What is Mean Sh

6、ift?,Non-parametric,Density Estimation,Non-parametric,Density,GRADIENT,Estimation,(Mean Shift),Data,Discrete PDF Representation,PDF Analysis,PDF in feature space,Color space,Scale space,Actually any feature space you can conceive,A tool for,:,Finding modes in a set of data samples,manifesting an,und

7、erlying probability density function(PDF)in,R,N,11,Non-Parametric Density Estimation,Assumption,:The data points are sampled from an underlying PDF,Assumed Underlying PDF,Real Data Samples,Data point density,implies PDF value!,12,Assumed Underlying PDF,Real Data Samples,Non-Parametric Density Estima

8、tion,13,Assumed Underlying PDF,Real Data Samples,?,Non-Parametric Density Estimation,14,Parametric,Density Estimation,Assumption,:The data points are sampled from an underlying PDF,Assumed Underlying PDF,Estimate,Real Data Samples,15,Kernel Density Estimation,Parzen Windows-General Framework,Kernel

9、Properties:,Normalized,Symmetric,Exponential weight decay,?,A function of some finite number of data points,x,1,x,n,Data,16,Kernel Density Estimation,Parzen Windows-Function Forms,A function of some finite number of data points,x,1,x,n,Data,In practice one uses the forms:,or,Same function on each di

10、mension,Function of vector length only,17,Kernel Density Estimation,Various Kernels,A function of some finite number of data points,x,1,x,n,Examples:,Epanechnikov Kernel,Uniform Kernel,Normal Kernel,Data,18,Kernel Density Estimation,Gradient,Give up estimating the PDF!,Estimate,ONLY,the gradient,Usi

11、ng the,Kernel form:,We get:,Size of window,19,Kernel Density Estimation,Gradient,Computing The Mean Shift,20,Computing The Mean Shift,Yet another Kernel,density estimation!,Simple Mean Shift procedure,:,Compute mean shift vector,Translate the Kernel window by,m(x),21,Mean Shift Mode Detection,Update

12、d Mean Shift Procedure:,Find all modes using the Simple Mean Shift Procedure,Prune modes by perturbing them(find saddle points and plateaus),Prune nearby take highest mode in the window,What happens if we,reach a saddle point,?,Perturb the mode position,and check if we return back,22,Adaptive,Gradie

13、nt,Ascent,Mean Shift Properties,Automatic convergence speed the mean shift vector size depends on the gradient itself.,Near maxima,the steps are small and refined,Convergence is guaranteed for infinitesimal steps only,infinitely convergent,(therefore set a lower bound),For Uniform Kernel(),convergen

14、ce is achieved in a,finite number of steps,Normal Kernel()exhibits a smooth trajectory,but is slower than Uniform Kernel().,23,Real Modality Analysis,Tessellate the space,with windows,Run the procedure in parallel,24,Real Modality Analysis,The,blue,data points were traversed by the windows towards t

15、he mode,25,Real Modality Analysis,An example,Window tracks signify the steepest ascent directions,26,Adaptive Mean Shift,27,Mean Shift Strengths&Weaknesses,Strengths,:,Application independent tool,Suitable for real data analysis,Does not assume any prior shape (e.g.elliptical)on data clusters,Can ha

16、ndle arbitrary feature spaces,Only ONE parameter to choose,h,(window size)has a physical meaning,unlike K-Means,Weaknesses,:,The window size(bandwidth selection)is not trivial,Inappropriate window size can cause modes to be merged,or generate additional“shallow”modes,Use adaptive window size,28,Mean

17、 Shift Applications,29,Clustering,Attraction basin,:the region for which all trajectories lead to the same mode,Cluster,:All data points in the,attraction basin,of a mode,Mean Shift:A robust Approach Toward Feature Space Analysis,by Comaniciu,Meer,30,Clustering,Synthetic Examples,Simple Modal Struct

18、ures,Complex Modal Structures,31,Clustering,Real Example,Initial window,centers,Modes found,Modes after,pruning,Final clusters,Feature space,:,L*u*v representation,32,Clustering,Real Example,L*u*v space representation,33,Clustering,Real Example,Not all trajectories,in the attraction basin,reach the

19、same mode,2D(L*u)space representation,Final clusters,34,Discontinuity Preserving Smoothing,Feature space,:Joint domain=spatial coordinates+color space,Meaning:treat the image as data points in the spatial and gray level domain,Image Data,(slice),Mean Shift,vectors,Smoothing,result,Mean Shift:A robus

20、t Approach Toward Feature Space Analysis,by Comaniciu,Meer,35,Discontinuity Preserving Smoothing,x,y,z,The image gray levels,can be viewed as data points,in the,x,y,z,space(joined spatial,And color space),36,Discontinuity Preserving Smoothing,y,z,Flat regions induce the modes!,37,Discontinuity Prese

21、rving Smoothing,The effect of,window size,in spatial and,range spaces,38,Discontinuity Preserving Smoothing,Example,39,Discontinuity Preserving Smoothing,Example,40,Object Contour Detection,Ray Propagation,Vessel Detection by Mean Shift Based Ray Propagation,by Tek,Comaniciu,Williams,Accurately segm

22、ent various objects(rounded in nature)in medical images,41,Object Contour Detection,Ray Propagation,Use displacement data to guide ray propagation,Discontinuity preserving smoothing,Displacement,vectors,Vessel Detection by Mean Shift Based Ray Propagation,by Tek,Comaniciu,Williams,42,Object Contour

23、Detection,Ray Propagation,Speed,function,Normal to,the contour,Curvature,43,Object Contour Detection,Original image,Gray levels along,red line,Gray levels after,smoothing,Displacement vectors,Displacement vectors,derivative,44,Object Contour Detection,Example,45,Object Contour Detection,Example,Impo

24、rtance of smoothing by curvature,46,Segmentation,Segment,=Cluster,or Cluster of Clusters,Algorithm,:,Run Filtering(,discontinuity preserving smoothing,),Cluster the clusters which are closer than window size,Image Data,(slice),Mean Shift,vectors,Segmentation,result,Smoothing,result,Mean Shift:A robu

25、st Approach Toward Feature Space Analysis,by Comaniciu,Meer,www.caip.rutgers.edu/comanici,47,Segmentation,Example,when feature space is only,gray levels,48,Segmentation,Example,49,Segmentation,Example,50,Segmentation,Example,51,Segmentation,Example,52,Segmentation,Example,53,Segmentation,Example,54,

26、Non-Rigid Object Tracking,55,Non-Rigid Object Tracking,Real-Time,Surveillance,Driver Assistance,Object-Based Video Compression,56,Current frame,Mean-Shift Object Tracking,General Framework:Target Representation,Choose a feature space,Represent the model in the chosen feature space,Choose a reference

27、 model in the current frame,57,Mean-Shift Object Tracking,General Framework:Target Localization,Search in the models neighborhood in next frame,Start from the position of the model in the current frame,Find best candidate by maximizing a similarity func.,Repeat the same process in the next pair of f

28、rames,Current frame,Model,Candidate,58,Mean-Shift Object Tracking,Target Representation,Choose a reference target model,Quantized Color Space,Choose a feature space,Represent the model by its PDF in the feature space,Kernel Based Object Tracking,by Comaniniu,Ramesh,Meer,59,Mean-Shift Object Tracking

29、PDF Representation,SimilarityFunction:,Target Model,(centered at 0),Target Candidate,(centered at y),60,Mean-Shift Object Tracking,Smoothness of,Similarity Function,Similarity Function:,Problem:,Target is represented by color info only,Spatial info is lost,Solution:,Mask the target with an isotropi

30、c kernel in the spatial domain,f,(,y,)becomes smooth in,y,f,is not smooth,Gradient-based optimizations are not robust,Large similarity variations for adjacent locations,61,Mean-Shift Object Tracking,Finding the PDF of the target model,Target pixel locations,A differentiable,isotropic,convex,monotoni

31、cally decreasing kernel,Peripheral pixels are affected by occlusion and background interference,The color bin index(1.,m,)of pixel,x,Normalization factor,Pixel weight,Probability of feature u in model,Probability of feature u in candidate,Normalization factor,Pixel weight,0,model,y,candidate,62,Mean

32、Shift Object Tracking,Similarity Function,Target model:,Target candidate:,Similarity function:,1,1,The Bhattacharyya Coefficient,63,Mean-Shift Object Tracking,Target Localization Algorithm,Start from the position of the model in the current frame,Search in the models neighborhood in next frame,Find

33、 best candidate by maximizing a similarity func.,64,Linear approx.,(around,y,0,),Mean-Shift Object Tracking,Approximating the Similarity Function,Model location:,Candidate location:,Independent of,y,Density estimate!,(as a function of,y,),65,Mean-Shift Object Tracking,Maximizing the Similarity Funct

34、ion,The mode of,=sought maximum,Important Assumption:,One mode,in the searched neighborhood,The target representation provides sufficient discrimination,66,Mean-Shift Object Tracking,Applying Mean-Shift,Original Mean-Shift:,Find mode of,using,The mode of,=sought maximum,Extended Mean-Shift:,Find mod

35、e of,using,67,Mean-Shift Object Tracking,About Kernels and Profiles,A special class of radially symmetric kernels:,The profile of kernel,K,Extended Mean-Shift:,Find mode of,using,68,Mean-Shift Object Tracking,Choosing the Kernel,Epanechnikov kernel:,A special class of radially symmetric kernels:,Ext

36、ended Mean-Shift:,Uniform kernel:,69,Mean-Shift Object Tracking,Adaptive Scale,Problem:,The scale of the target changes in time,The scale(,h),of the kernel must be adapted,Solution:,Run localization 3 times with different,h,Choose,h,that achieves maximum similarity,70,Mean-Shift Object Tracking,Resu

37、lts,Feature space:,16,16,16 quantized RGB,Target:,manually selected on 1,st,frame,Average mean-shift iterations:,4,71,Mean-Shift Object Tracking,Results,Partial occlusion,Distraction,Motion blur,72,Mean-Shift Object Tracking,Results,73,Mean-Shift Object Tracking,Results,Feature space:,128,128 quanti

38、zed RG,74,Mean-Shift Object Tracking,The Scale Selection Problem,Kernel too big,Kernel too small,Poor localization,h,mustnt get too big or too small!,Problem:,In uniformly colored regions,similarity is invariant to,h,Smaller,h,may achieve better similarity,Nothing keeps,h,from shrinking too small!,7

39、5,Tracking Through Scale Space,Motivation,Spatial localization for several scales,Previous method,Simultaneous localization in space and scale,This method,Mean-shift Blob Tracking through Scale Space,by R.Collins,76,Lindebergs Theory,Selecting the best scale for describing image features,Scale-space

40、 representation,Differential operator applied,50 strongest responses,x,y,77,Scale-space representation,Lindebergs Theory,The Laplacian operator for selecting blob-like features,Laplacian of Gaussian(LOG),Best features are at(,x,)that maximize,L,2D LOG filter with scale,x,y,3D scale-space representat

41、ion,78,Lindebergs Theory,Multi-Scale Feature Selection Process,Original Image,3D scale-space function,Convolve,250 strongest responses(Large circle=large scale),Maximize,79,Tracking Through Scale Space,Approximating LOG using DOG,Why DOG?,Gaussian pyramids are created faster,Gaussian can be used as

42、a mean-shift kernel,2D LOG filter with scale,2D DOG filter with scale,2D Gaussian with,=0 and scale,2D Gaussian with,=0 and scale 1.6,DOG filters at multiple scales,3D spatial kernel,Scale-space filter bank,80,Tracking Through Scale Space,Using Lindebergs Theory,Weight image,Model:,Candidate:,Color

43、bin:,at,Pixel weight:,Recall:,The likelihood,that each candidate pixel belongs to the target,1D scale kernel,(,Epanechnikov),3D spatial kernel(DOG),Centered at current location and scale,3D scale-space representation,Modes are blobs in the scale-space neighborhood,Need a mean-shift procedure that fi

44、nds local modes in,E,(,x,),81,Tracking Through Scale Space,Example,Image of 3 blobs,A slice through the 3D scale-space representation,82,Tracking Through Scale Space,Applying Mean-Shift,Use interleaved spatial/scale mean-shift,Spatial stage:,Fix,and look for the best,x,Scale stage:,Fix x and look for the best,Iterate stages until convergence of,x,and,x,x,0,0,x,opt,opt,83,Tracking Through Scale Space,Results,Fixed-scale,Tracking through scale space,10%scale adaptation,84,Thank,You,85,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服