ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:1.23MB ,
资源ID:10163180      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10163180.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(抛物线的定义及标准方程(课堂PPT).ppt)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

抛物线的定义及标准方程(课堂PPT).ppt

1、单击此处编辑母版标题样式,*,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2.4.1,抛物线及其,标准方程,4/24/2025,1,抛物线的生活实例,投篮运动,4/24/2025,2,4/24/2025,3,萨尔南拱门,4/24/2025,4,4/24/2025,5,抛物线及其标准方程,4/24/2025,6,实验模型:,M,F,如图,点F是定点,L,是不经过点F的定直线。H是,L,上任意一点,过点H 作 ,线段FH的垂直平分线交MH于点M,拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?,实验,4/24/2025,7,平面内与一个定点,F,和一条定直线,l,(,l,

2、不,经过点,F,)的距离相等的点的轨迹叫做,抛物线,一、抛物线定义,其中,定点,F,叫做抛物线的,焦点,定直线,l,叫做抛物线的,准线,l,H,F,M,定义,告诉我们:,1、判断抛物线的一种方法,2、抛物线上任一点的性质:,|MF|=|MH|,4/24/2025,8,1、到定点(3,0)与到直线 的距离相等的点的轨迹是(),A.椭圆 B.双曲线 C.抛物线 D.直线,2、到定点(3,0)与到直线 的距离相等的点的轨迹是(),A.椭圆 B.双曲线 C.抛物线 D.直线,C,D,练习,4/24/2025,9,二、抛物线的标准方程,1.,建,:建立直角坐标系.,3.,限(现),:根据限制条件列出等式

3、4.,代,:代入坐标与数据;,5.,化,:化简方程.,2.,设,:设所求的动点(x,y);,回顾求曲线方程一般步骤:,4/24/2025,10,F,M,l,H,建系,x,y,y,O,y,O,O,N,K,N,F,K,4/24/2025,11,(一)标准方程的推导:,y,o,F,设KF=p(p,0),由|MF|=|MH|可知,,化简得,y,2,=2px(p0),如图,以过F点垂直于直线 的直线为 轴,F和垂足的中点为坐标原点建立直角坐标系,K,则F(,0),:x,=,-,p,2,p,2,设动点M的坐标为(x,y),,M(x,y),H,4/24/2025,12,把方程,y,2,=2,px,(,p

4、0),叫做抛物线的,标准方程,而,p,的几何意义是,:,焦点到准线的距离,其中 焦点,F,(,0),,准线方程,l,:,x,=-,p,2,p,2,K,O,l,F,x,y,.,想一想,:,在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形式的标准方程,那么抛物线的标准方程有哪些不同的形式?,看图,4/24/2025,13,(二)四种抛物线的标准方程,图,4/24/2025,14,(三)区别与联系,1、四种形式标准方程及图像的共同特征,(1)、二次项,系数,都化成了_,(2)、四种形式的方程一次项的系数都含,2p,1,(3)、四种抛物线都过,_,点,;焦点与准线分别位于此点的两侧,

5、且离此点的距离均为_,O,4/24/2025,15,1、,一次项(x或y),定焦点,2、一次项系数,符号,定开口方向.,正号朝坐标轴的正向,负号朝坐标轴的负向。,二、四种形式标准方程及图像的区别,4/24/2025,16,例1,已知抛物线的标准方程是,y,2,=6,x,,,求它的焦点坐标和准线方程;,解:2,P,=6,P,=3,所以抛物线的焦点坐标是(,0),准线方程是,x,=,是一次项系数的,是一次项系数的,的相反数,三、应用,4/24/2025,17,练习,求下列抛物线的焦点坐标和准线方程,(1),y,2,=-20,x,(2),y,=6,x,2,焦点F(-5 ,0),准线:x=5,焦点F(

6、0 ,),1,24,准线:y=,1,24,4/24/2025,18,例2,已知抛物线的焦点坐标是,F,(0,-2),求它的标准方程。,解:,因为焦点在y的负半轴上,所以设所,求的标准方程为,x,2,=-2,p,y,由题意得 ,即,p,=4,所求的标准方程为,x,2,=-8y,4/24/2025,19,解题感悟:,求抛物线标准方程的步骤:,(1),确定抛物线的形式,.,(2),求p值,(3),写抛物线方程,4/24/2025,20,求过点,A,(-3,2)的抛物线的标准方程。,A,O,y,x,解:,(1),当抛物线的焦点在y轴,的正半轴上时,把,A,(-3,2),代入,x,2,=2,py,,得,

7、p,=,(2)当焦点在,x,轴的负半轴上时,,把A(-3,2)代入,y,2,=,-,2,px,,,得,p,=,抛物线的标准方程为,x,2,=,y,或,y,2,=,x,。,巩固提高,:,注意:,焦点或开口方向不定,则要注意分类讨论,4/24/2025,21,例3.一种卫星接收天线的轴截面如图。卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。已知接收天线的口径为4.8m,深度为0.5m,试建立适当的坐标系,求抛物线的标准方程和焦点坐标。,4/24/2025,22,小结,1,.,理解抛物线的定义,2.掌握抛物线的标准方程的四种形式以及P的几何意义.,3.注重数形结合、分类讨论

8、思想的应用,4/24/2025,23,练习,根据下列条件写出各自的抛物线的标准方程,(1)焦点是 F(3,0),(2)焦点到准线的距离为2,y,2,=12x,y,2,=4x,y,2,=4x,x,2,=4y,x,2,=4y,4/24/2025,24,4a,1,焦点坐标是,(0,),,准线方程是:,y=,4a,1,当a0时,抛物线的开口向上,p,2,=,1,4a,二次函数,(a 0)的图象为什么是一条抛物线?试指出它的开口方向、焦点坐标和准线方程。,解:,二次函数 化为:其中,思考:,4/24/2025,25,作业,P,73 A组:1,2(必做),补充:求经过点p(4,-2)的抛物线,的标准方程。,4/24/2025,26,解法一:以,为,轴,过点,垂直于,的直线为 轴建立直角坐标系(如下图所示),则定点 设动点点 ,由抛物线定义得:,化简得:,M(x,y),x,y,O,F,L,4/24/2025,27,解法二:以定点,为原点,过点 垂直于,的直线为,轴建立直角坐标系(如下图所示),则定点 ,的方程为,设动点 ,由抛物线定义得,化简得:,M(x,y),x,y,F(O),L,4/24/2025,28,y,2,2p,(p0),F(,,0),2,p,2,p,x,y,L,F,o,M,4/24/2025,29,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服