ImageVerifierCode 换一换
格式:DOC , 页数:55 ,大小:617.04KB ,
资源ID:10142510      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10142510.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(通用陆面(CoLM)模式模型手册.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

通用陆面(CoLM)模式模型手册.doc

1、The Common Land Model (CoLM)Technical & User GuideYongjiu Dai & Duoying Ji School of GeographyBeijing Normal UniversityBeijing 100875ChinaE-mail: yongjiudaiduoyingjiJuly 7, 2008Contents1. Introduction 2. Creating and Running the Executable 2.1 Specification of script environment variables and header

2、 file 2.2 Surface data making 2.3 Initial data making 2.4 Time-loop calculation 3. CoLM Surface Dataset 4. CoLM Atmospheric Forcing Dataset 4.1 GSWP2 forcing dataset4.2 PRINCETON forcing dataset4.3 Temporal interpolation of the forcing data5. CoLM Model Structure and Parallel Implementation5.1 CoLM

3、Model Structure5.2 CoLM MPI Parallel Design5.3 CoLM MPI Parallel Implementation5.4 CoLM Source Code and Subroutines Outline6. CoLM Parameter and Variables 6.1 Model Parameters 6.2 Time invariant model variables 6.3 TUNABLE constants 6.4 Time-varying state variables 6.5 Forcing 6.6 Fluxes 7. Examples

4、7.1 Single Point Offline Experiment7.2 Global Offline Experiment with GSWP2 DatasetTable 1: Model directory structure Table 2: define.h CPP tokens Table 3: Namelist variables for initial data making Table 4: Namelist variables for Time-loop calculation Table 5: The list of raw data available Table 6

5、 Description of 24-category (USGS) vegetation categories Table 7: Description of 17-category soil categories Table 8: The relative amounts of sand, soil, and clay Table 9: netCDF File Information of the Processed Atmospheric Forcing DataTable 10: Source code and Subroutines OutlineTable 11: Dimensi

6、on of model array Table 12: Control variables to determine updating on time steps Table 13: Model time invariant variables Table 14: Model TUNABLE constants Table 15: Run calendar Table 16: Time-varying Variables for restart runTable 17: Atmospheric Forcing Table 18: Model output in xy Grid Form Fig

7、ure 1: Flow chart of the surface data makingFigure 2: Flow chart of the initial data makingFigure 3: Flow chart of the time-looping calculationFigure 4: Diagram of the domain partition at surface data makingFigure 5: Diagram of the domain partition at time-looping calculationFigure 6: Diagram of the

8、 patches and grids mapping relationship1. IntroductionThis users guide provide the user with the coding implementation, and operating instructions for the Common Land Model (CoLM) which is the land surface parameterization used in offline mode or with the global climate models and regional climate m

9、odels. The development of the Common Land Model (hereafter we call CLM initial version) can be described as the work of a community effort. Initial software specifications and development focused on evaluating the best features of existing land models. The model performance has been validated in ver

10、y extensive field data included sites adopted by the Project for Intercomparison of Land-surface Parameterization Schemes (Cabauw, Valdai, Red-Arkansas river basin) and others FIFE, BOREAS, HAPEX-MOBILHY, ABRACOS, Sonoran Desert, GSWP, LDAS. The model has been coupled with the NCAR Community Climate

11、 Model (CCM3). Documentation for the CLM initial version is provided by Dai et al. (2001) while the coupling with CCM3 is described in Zeng et al. (2002). The model was introduced to the modeling community in Dai et al. (2003).The CLM initial version was adopted as the Community Land Model (CLM2.0)

12、for use with the Community Atmosphere Model (CAM2.0) and version 2 of the Community Climate System Model (CCSM2.0). The current version of Community Land Model, CLM3.0, was released in June 2004 as part of the CCSM3.0 release (http:/www.ccsm.ucar.edu/models/ccsm3.0/clm3/). The Community Land Model (

13、CLM3.0) is radically different from CLM initial version, particularly from a software engineering perspective, and the great advancements in the areas of carbon cycling, vegetation dynamics, and river routing. The major differences between CLM 2.0 and CLM initial version are: 1) the biome-type land

14、cover classification scheme was replaced with a plant functional type (PFT) representation with the specification of PFTs and leaf area index from satellite data; 2) the parameterizations for vegetation albedo and vertical burying of vegetation by snow; 3) canopy scaling, leaf physiology, and soil w

15、ater limitations on photosynthesis to resolve deficiencies indicated by the coupling to a dynamic vegetation model; 4) vertical heterogeneity in soil texture was implemented to improve coupling with a dust emission model; 5) a river routing model was incorporated to improve the fresh water balance o

16、ver oceans; 6) numerous modest changes were made to the parameterizations to conform to the strict energy and water balance requirements of CCSM; 7) Further substantial software development was also required to meet coding standards. Besides the changes from a software engineering perspective, the d

17、ifferences between CLM3.0 and CLM2.0 are: 1) several improvements to biogeophysical parameterizations to correct deficiencies; 2) stability terms were added to the formulation for 2-m air temperature to correct this; 3) the equation was modified to correct a discontinuity in the equation that relate

18、s the bulk density of newly fallen snow to atmospheric temperature; 4) a new formulation was implemented that provides for variable aerodynamic resistance with canopy density; 5) the vertical distribution of lake layers was modified to allow for more accurate computation of ground heat flux; 6) a fi

19、x was implemented for negative round-off level soil ice caused by sublimation; 7) a fix was implemented to correct roughness lengths for non-vegetated areas. Documentation for the Community Land Model (CLM3.0) was provided by Oleson et al. (2004). The simulations of CLM2.0 coupling with the Communit

20、y Climate are described in Bonan et al. (2002). The simulations of CLM3.0 with the Community Climate System Model (CCSM3.0) are summarized in the Special Issue of Journal of Climate by Dickinson et al. (2005), Bonan and S. Levis (2005).Concurrent with the development of the Community Land Model, the

21、 CLM initial version was undergoing further development at Georgia Institute of Technology and Beijing Normal University in leaf temperature, photosynthesis and stomatal calculation. Big-leaf treatment by CLM initial version and CLM3.0 that treat a canopy as a single leaf tend to overestimate fluxes

22、 of CO2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems. A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes was necessitated to the CLM initial version that is not in the CLM3.

23、0. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesisstomatal conductance model for sunlit

24、and shaded leaves separately, and for the simultaneous transfers of CO2 and water vapor into and out of the leafleaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response

25、 to the radiationweight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3)

26、a well-built quasi-NewtonRaphson method for simultaneous solution of temperatures of the sunlit and shaded leaves. For avoiding confusion with the Community Land Model (CLM2.0, CLM3.0 versions), we name this improved version of the Common Land Model as CoLM.This was same as model now supported at NC

27、AR. NCAR made extensive modifications mostly to make more compatible with NCAR CCM but some for better back compatibility with previous work with NCAR LSM. For purpose of using in a variety of other GCMs and mesoscale models, this adds a layer of complexity that may be unnecessary. Thus we have cont

28、inued testing further developments with CLM initial version. Some changes suggested by Land Model working groups of CCSM are also implemented, such as, stability terms to the formulation for 2-m air temperature, a new formulation for variable aerodynamic resistance with canopy density. CoLM is radic

29、ally different from either CLM initial version or CLM2.0 or CLM3.0, the differences could be summarized as follows, 1) Two big leaf model for leaf temperatures, photosynthesis-stomatal resistance;2) Two-stream approximation for canopy albedoes calculation with the solution for singularity point, and

30、 the calculations for radiation for the separated canopy (sunlit and shaded); 3) New numerical scheme of iteration for leaf temperatures calculation; 4) New treatment for canopy interception with the consideration of the fraction of convection and large-scale precipitation; 5) Soil thermal and hydro

31、logical processes with the consideration of the depth to bedrock; 6) Surface runoff and sub-surface runoff; 7) Rooting fraction and the water stress on transpiration; 8) Use a grass tile 2m height air temperature in place of an area average for matching the routine meteorological observation;9) Perf

32、ect energy and water balance within every time-step; 10) A slab ocean-sea ice model; 11) Totally CoLM coding structure.The development of CoLM is trying to provide a version for public use and further development, and share the improvement contributed by many groups. The source code and datasets req

33、uired to run the CoLM in offline mode can be obtained via the web from: The CoLM distribution consists of three tar files: CoLM_src.tar.gz CoLM_src_mpi.tar.gzCoLM_dat.tar.gz.The file CoLM_src.tar.gz and CoLM_src_mpi.tar.gz contain code, scripts, the file CoLM_src.tar is the serial version of the CoL

34、M, and the file CoLM_src_mpi.tar.gz is the parallel version of the CoLM, the file CoLM_dat.tar contains raw data used to make the model surface data. The Table 1 lists the directory structure of the parallel version model.Table 1: Directory NameDescriptioncolm/rawdata/Raw (highest provided resolutio

35、n) datasets used by CoLM to generate surface datasets at model resolution. We are currently providing 5 surface datasets with resolution 30 arc second:DEM-USGS.30sLWMASK-USGS.30s (not used) SOILCAT.30s SOILCATB.30sVEG-USGS.30sBEDROCKDEPTH (not available)LAI (not available)colm/data/Atmospheric forci

36、ng variables suitable for running the model in offline modecolm/mksrfdata/Routines for generating surface datasetscolm/mkinidata/Routines for generating initial datasetscolm/main/Routines for executing the time-loop calculation of soil temperatures, water contents and surface fluxescolm/run/Script t

37、o build and execute the modelcolm/graph/GrADs & NCL files for display the history filescolm/interp/Temporal interpolation routines used for GSWP2 & PRINCETON atmospheric forcing datasetcolm/tools/Useful programs related with model runningThe scientific description of CoLM is given in 1. Dai, Y., R.E

38、 Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis and stomatal conductance. Journal of Climate, 17: 2281-2299.2. Oleson K. W., Y. Dai, G. Bonan, M. Bosilovich, R. E. Dickinson, P. Dirmeyer, F. Hoffman, P. Houser, S. Levis, G. Niu, P. Thornton, M. Vertenst

39、ein, Z.-L. Yang, X. Zeng, 2004: Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR.3. Dai, Y., X. Zeng, R. E. Dickinson, I. Baker, G. Bonan, M. Bosilovich, S. Denning, P. Dirmeyer, P. Houser, G. Niu, K. Oleson, A. Schlosser, and Z.-L. Yang, 2003: The Common Land Model (CLM). Bu

40、ll. of Amer. Meter. Soc., 84: 1013-1023.4. Dai, Y., X. Zeng, and R.E. Dickinson, 2002: The Common Land Model: Documentation and Users Guide (http:/climate.eas.gatech.edu/dickinson/).We value the responses and experiences of our collaborators in using CoLM and encourage their feedback on problems in

41、the current model formulation and the coding, as well as insight and suggestions for future model refinement and enhancement. It would be particularly helpful if users would communicate such feedback informally and where possible share with us documented model applications including manuscripts, pap

42、ers, procedures, or individual model development. 2. Creating and Running the Executable The CoLM model can run as a stand alone executable where atmospheric forcing data is periodically read in. It can also be run as part of the Atmosphere Model where communication between the atmospheric and land

43、models occurs via subroutine calls or the special coupler. In this Users Guide, well focus on the parallel version CoLM, most of the scripts and setting of the serial version CoLM are similar to the parallel version, and even more simple.offline mode In order to build and run the CoLM on offline mod

44、e, two sample scripts: jobclm.csh, jobclm_single.csh, and the corresponding Makefile files are provided in run and the source code directories respectively. The scripts, jobclm.csh and jobclm_single.csh, create a model executable, determine the necessary input datasets, construct the input model nam

45、elist. Users must edit these scripts appropriately(适当的) in order to build and run the executable for their particular requirements and in their particular environment. These scripts are provided only as an example to aid the novice user in getting the CoLM up and running as quickly as possible. The

46、script jobclm_single.csh used to do a single-point offline simulation experiment, can be run with minimal user modification, assuming the user resets several environment variables at the top of the script. In particular, the user must set ROOTDIR to point to the full disk pathname of the model root

47、directory. And the jobclm.csh is used to do a global or regional offline simulation experiment, usually should be modified heavily to fulfill different requirements. The following part well explain the jobclm.csh in detail.The script jobclm.csh can be divided into five sections: 1) Specification of

48、script environment variables, creating header file define.h; 2) Compiling the surface data making, initial data making, time-loop calculation programs respectively.3) Surface data making, including input namelist creating; 4) Initial data making: including input namelist creating;5) Time-loop calculation: including input namelist creating. 2.1 Specification of script environment variables The user will gene

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服