ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:190.04KB ,
资源ID:10071049      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10071049.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(定解条件和定解问题.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

定解条件和定解问题.doc

1、定解条件和定解问题 含有未知函数的偏导数的方程叫偏微分方程,常微分方程可以看成是特殊的偏微分方程。方程的分数是1的称为方程式,个数多于1的叫做方程组。方程(组)中出现的未知函数的最高阶偏导数的阶数称为方程(组)的阶数。如果方程(组)中的项关于未知函数及其各阶偏导数的整体来讲是线性的,就称方程(组)为线性的,否则就称为非线性的。非线性又分为半线性、拟线性和完全非线性. 一、 定解条件 给定一个常微分方程,有通解和特解的概念。通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态。特解除了要求满足方程还要满足给定的外加(特殊)条件。对偏微分方程也是如此,换句话说,只有偏微分方程还

2、不足以确定一个物理量随空间和时间的变化规律,因为在特定情况下这个物理量还与它的初始状态和它在边界受到的约束有关。描述初始时刻的物理状态和边界的约束情况,在数学上分别称为初始条件(或初值条件)和边界条件(或边值条件),他们统称为定解条件. 初始条件:能够用来说明某一具体物理现象初始状态的条件,即描述物理过程初始状态的数学条件. 边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件,即描述物理过程边界状态的数学条件。 定解条件:初始条件和边界条件的统称。 非稳态问题:定解条件包括初始条件和边界条件。 稳态问题:定解条件为边界条件。 1、弦振动方程 ( ) 初始条件是指初始时刻

3、)弦的位移和速度。若以,分别表示弦上任意点的初始位移和初始速度,则初始条件为: 边界条件是指弦在两端点的约束情况,一般有三种类型。 (1)第一类边界条件(狄利克雷(Dirichlet)边界条件):已知端点处弦的位移是,则边界条件为:   或   当时,表示在该点处弦是固定的。 (2)第二类边界条件(诺伊曼(Neumann)边界条件):已知端点弦所受的垂直于弦线的外力或,则边界条件为: 或  当,表示弦在端点处自由滑动。 (3)第三类边界条件(混合边界条件或罗宾(Robin)边界条件:已知端点处弦的位移和所受的垂直于弦线的外力的和: 或 , 其中表

4、示两端支承的弹性系数,当时,表示弦在该端点处被固定在一个弹性支承上。 2、热传导方程( 初始条件是指初始时刻物体内的温度分布情况. 式中φ( x, y, z )为已知函数,表示温度在初始时刻的分布. 边界条件是指边界上温度受周围介质的影响情况,可分为三种。 (1) 第一类边界条件:介质表面温度已知   式中,p为边界面上的点。 (2)第二类边界条件:通过介质表面单位面积的热流量己知。 (3)第三类边界条件:边界面与周围空间的热量交换规律已知 由热量守恒定律可知,这个热量等于单位时间内流过单位面积上的热量. 3、位势方程(泊松方程或拉普拉斯方

5、程) 对于稳态问题,变量不随时间发生变化.定解条件不含初始条件,只有边界条件。 第一边值问题,狄利克莱问题(狄氏问题) 第二边值问题,牛曼问题 第三边值问题(混合问题)鲁宾问题 二、 定解问题 一个方程匹配上定解条件就构成定解问题。对于定解问题,通常由于定解条件的差异有下面的三种提法: ①偏微分方程(泛定方程)+初始条件+边界条件,称为初边值问题或混合问题; ②偏微分方程(泛定方程)+初始条件,称为初值问题或柯西问题; ③偏微分方程(泛定方程)边界条件,称为边值问题。 在一个偏微分方程的定解问题中,把不含未知函

6、数及其偏导数的项,称为自由项。如果方程中的自由项为零,则称方程为齐次方程,否则就称为非齐次方程.如果边界条件中的自由项为零,则称边界条件为齐次边界条件,否则就称为非齐次边界条件.例如,对于弦振动方程,当外力等于零时,方程就变为齐次方程,此时也称它为弦的自由振动方程;当弦的两端固定时,边界条件就是齐次边界条件。 三、 例题 1、长为l的弦,两端固定于0和l。在中点位置将弦沿着横向拉开距离h,如图所示,然后放手任其振动,试写出初始条件. l x l/2 h 解:初始时刻就是放手的那一瞬间,按题意初始速度为零,即有 初始位移 2、长为l 的杆,上端固定在电梯的顶杆上,杆身竖直,下端自由。电梯在下降过程中,当速度为v0 时突然停止.试写出杆振动的定解问题。 四、 总结 王晶(1307021066) 物理学术班

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服