资源描述
微积分基本形成性考核作业(一)
————函数,极限和持续
一、填空题(每题2分,共20分)
1.函数定义域是 .
2.函数定义域是 .
3.函数定义域是 .
4.函数,则 .
5.函数,则 2 .
6.函数,则 .
7.函数间断点是 .
8. 1 .
9.若,则 2 .
10.若,则 .
二、单选题(每题2分,共24分)
1.设函数,则该函数是(B ).
A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
2.设函数,则该函数是(A ).
A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
3.函数图形是有关(D )对称.
A. B.轴 C.轴 D.坐标原点
4.下列函数中为奇函数是( C ).
A. B. C. D.
5.函数定义域为( D ).
A. B. C.且 D.且
6.函数定义域是( D ).
A. B.
C. D.
7.设,则( C )
A. B.
C. D.
8.下列各函数对中,( D )中两个函数相等.
A., B., C., D.,
9.当时,下列变量中为无穷小量是( C ).
A. B. C. D.
10.当( B )时,函数,在处持续。
A.0 B.1 C. D.
11.当( D )时,函数在处持续.
A.0 B.1 C. D.
12.函数间断点是( A )
A. B.
C. D.无间断点
三、解答题(每题7分,共56分)
⒈计算极限.
2.计算极限
3.
4.计算极限
5.计算极限.
6.计算极限.
==
7.计算极限
=
8.计算极限.
微积分基本形成性考核作业(二)
————导数、微分及应用
一、填空题(每题2分,共20分)
1.曲线在点斜率是 .
2.曲线在点切线方程是 .
3.曲线在点处切线方程是 .
4. .
5.若y = x (x – 1)(x – 2)(x – 3),则(0) = -6 .
6.已知,则= 27+ .
7.已知,则= .
8.若,则 -2 .
9.函数单调增长区间是 .
10.函数在区间内单调增长,则a应满足 .
二、单选题(每题2分,共24分)
1.函数在区间是( D )
A.单调增长 B.单调减少
C.先增后减 D.先减后增
2.满足方程点一定是函数( C ).
A.极值点 B.最值点 C.驻点 D. 间断点
3.若,则=( C ).
A. 2 B. 1 C. -1 D. -2
4.设,则( B ).
A. B. C. D.
5.设是可微函数,则( D ).
A. B.
C. D.
6.曲线在处切线斜率是( C ).
A. B. C. D.
7.若,则( C ).
A. B.
C. D.
8.若,其中是常数,则( C ).
A. B. C. D.
9.下列结论中( A )不对旳.
A.在处持续,则一定在处可微.
B.在处不持续,则一定在处不可导.
C.可导函数极值点一定发生在其驻点上.
D.若在[a,b]内恒有,则在[a,b]内函数是单调下降.
10.若函数f (x)在点x0处可导,则( B )是错误.
A.函数f (x)在点x0处有定义 B.,但
C.函数f (x)在点x0处持续 D.函数f (x)在点x0处可微
11.下列函数在指定区间上单调增长是( B ).
A.sinx B.e x C.x 2 D.3 - x
12.下列结论对旳有( A ).
A.x0是f (x)极值点,且(x0)存在,则必有(x0) = 0
B.x0是f (x)极值点,则x0必是f (x)驻点
C.若(x0) = 0,则x0必是f (x)极值点
D.使不存在点x0,一定是f (x)极值点
三、解答题(每题7分,共56分)
⒈设,求.
2.设,求.
3.设,求.
4.设,求.
5.设是由方程拟定隐函数,求.
6.设是由方程拟定隐函数,求.
7.设是由方程拟定隐函数,求.
8.设,求.
微积分基本形成性考核作业(三)
———不定积分,极值应用问题
一、填空题(每题2分,共20分)
1.若一种原函数为,则 。
2.若一种原函数为,则 。
3.若,则 .
4.若,则 .
5.若,则 .
6.若,则 .
7. .
8. .
9.若,则 .
10.若,则 .
二、单选题(每题2分,共16分)
1.下列等式成立是( A).
A. B.
C. D.
解:应选A
2.若,则( A ).
A. B.
C. D.
3.若,则( A ).
A. B.
C. D.
4.如下计算对旳是( A )
A. B.
C. D.
5.( A )
A. B.
C. D.
6.=( C ).
A. B. C. D.
7.如果等式,则( B )
A. B. C. D.
三、计算题(每题7分,共35分)
1.
2.
3.
4.
5.
四、极值应用题(每题12分,共24分)
1. 设矩形周长为120厘米,以矩形一边为轴旋转一周得一圆柱体。试求矩形边长为多少时,才干使圆柱体体积最大。
设矩形边长分别为 x、60-x cm
V==
令,x=0(舍去)或x=40
矩形边长为40cm、20cm有最大体积。
2. 欲用围墙围成面积为216平方米一成矩形土地,并在正中用一堵墙将其隔成两块,问这块土地长和宽选择多大尺寸,才干使所用建筑材料最省?
设土地长x米,宽米。
令,,当x=18时y有极小值。
矩形长18米,宽12米。
五、证明题(本题5分)
函数在(是单调增长.
证明:
当时,,因此函数在单调增长。
微积分基本形成性考核作业(四)
———定积分及应用、微分方程
一、填空题(每题2分,共20分)
1.
2.
3.已知曲线在任意点处切线斜率为,且曲线过,则该曲线方程是 。
4.若 4 .
5.由定积分几何意义知,= 。
6. 0 .
7.= .
8.微分方程特解为 .
9.微分方程通解为 .
10.微分方程阶数为 4 .
二、单选题(每题2分,共20分)
1.在切线斜率为2x积分曲线族中,通过点(1, 4)曲线为( A ).
A.y = x2 + 3 B.y = x2 + 4
C. D.
2.若= 2,则k =( A ).
A.1 B.-1 C.0 D.
3.下列定积分中积分值为0是( A ).
A. B.
C. D.
4.设是持续奇函数,则定积分( D )
A. B. C. D. 0
5.( D ).
A.0 B. C. D.
6.下列无穷积分收敛是( B).
A. B.
C. D.
7.下列无穷积分收敛是(B ).
A. B.
C. D.
8.下列微分方程中,( D )是线性微分方程.
A. B.
C. D.
9.微分方程通解为( C ).
A. B. C. D.
10.下列微分方程中为可分离变量方程是( B)
A. ; B. ;
C. ; D.
三、计算题(每题7分,共56分)
1.
2.
3.
4.
5.
6.求微分方程满足初始条件特解.
原方程满足y'+P(x)y=Q(x)形式,使用通解公式。
,
代入,
C=1
7.求微分方程通解。
原方程满足y'+P(x)y=Q(x)形式,使用通解公式。
,
四、证明题(本题4分)
证明等式。
证明:
,令,则,
展开阅读全文