收藏 分销(赏)

2022年机械原理大作业平面六杆机构的运动分析.doc

上传人:快乐****生活 文档编号:9828546 上传时间:2025-04-10 格式:DOC 页数:22 大小:657.54KB 下载积分:10 金币
下载 相关 举报
2022年机械原理大作业平面六杆机构的运动分析.doc_第1页
第1页 / 共22页
2022年机械原理大作业平面六杆机构的运动分析.doc_第2页
第2页 / 共22页


点击查看更多>>
资源描述
平面六杆机构旳运动分析 (题号 1 - B) 成 绩 ___________________________ 指引教师 班 级 学 号 姓 名 1、题目阐明 如右图所示平面六杆机构,试用计算机完毕其运动分析。 已知其尺寸参数如下表所示: 组号 L1 L2 L2’ L3 L4 L5 L6 α xG yG 1-B 24.0 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 题目规定: 三人一组计算出原动件从0到360时(计算点数37)所规定旳各运动变量旳大小,并绘出运动曲线图及轨迹曲线。 2、题目分析 1) 建立封闭图形:    L1 + L2= L3+ L4 L1 + L2= L5+ L6+AG 2) 机构运动分析 a、角位移分析 由图形封闭性得: 将上式化简可得: b、角速度分析 上式对时间求一阶导数,可得速度方程: 化为矩阵形式为: c、角加速度分析: 矩阵对时间求一阶导数,可得加速度矩阵为: d、E点旳运动状态 位移: 速度: 加速度: 3、 流程图 4、 源程序 #include <math.h> #include <stdio.h> #include "agaus.c" #include "dnetn.c" #include "conio.h" #define Alpha (PI/3) #define PI 3.979 #define Angle (PI/180) FILE *fp; struct motion { int theta1; double theta[5]; /*theta1,2,3,5,6*/ double w[4];/*w2,3,5,6*/ double alpha[4]; double XYe[2],Ve[3],ae[3]; }; struct motion mot[37]; struct motion *p; int k=100; double L[7]={65.0,24.0,105.6,67.5,87.5,34.4,25.0}; double XG=153.5; double YG=41.7; double w1=1.0; double t=0.1; double h=0.1; double eps=0.0000001; main() { int n,i,m; double x[4]={26.23*Angle,49.75*Angle,87.16*Angle,37.25*Angle}; fp=fopen("num-output.txt","w"); for(n=0,p=mot;n<=36;n++,p++) { double a[4][4]; double b[4]; (*p).theta1=n*10; (*p).theta[0]=n*10*Angle; i=dnetn(4,eps,t,h,x,k); for(m=0;m<4;m++) (*p).theta[m+1]=x[m]; printf("%d %d",n,i); getchar(); a[0][0]=-L[2]*sin((*p).theta[1]); a[0][1]=L[3]*sin((*p).theta[2]); a[0][2]=0.; a[0][3]=0.; a[1][0]=L[2]*cos((*p).theta[1]); a[1][1]=-L[3]*cos((*p).theta[2]); a[1][2]=0.; a[1][3]=0.; a[2][0]=-L[0]*sin((*p).theta[1]-Alpha); a[2][1]=-L[3]*sin((*p).theta[2]); a[2][2]=-L[5]*sin((*p).theta[3]); a[2][3]=L[6]*sin((*p).theta[4]); a[3][0]=L[0]*cos((*p).theta[1]-Alpha); a[3][1]=L[3]*cos((*p).theta[2]); a[3][2]=L[5]*cos((*p).theta[3]); a[3][3]=-L[6]*cos((*p).theta[4]); b[0]=L[1]*sin((*p).theta[0])*w1; b[1]=-L[1]*cos((*p).theta[0])*w1; b[2]=0.; b[3]=0.; if(agaus(a,b,4)!=0) for(m=0;m<4;m++) (*p).w[m]=b[m]; a[0][0]=-L[2]*sin((*p).theta[1]); a[0][1]=L[3]*sin((*p).theta[2]); a[0][2]=0.; a[0][3]=0.; a[1][0]=L[2]*cos((*p).theta[1]); a[1][1]=-L[3]*cos((*p).theta[2]); a[1][2]=0.; a[1][3]=0.; a[2][0]=-L[0]*sin((*p).theta[1]-Alpha); a[2][1]=-L[3]*sin((*p).theta[2]); a[2][2]=-L[5]*sin((*p).theta[3]); a[2][3]=L[6]*sin((*p).theta[4]); a[3][0]=L[0]*cos((*p).theta[1]-Alpha); a[3][1]=L[3]*cos((*p).theta[2]); a[3][2]=L[5]*cos((*p).theta[3]); a[3][3]=-L[6]*cos((*p).theta[4]); b[0]=L[2]*cos((*p).theta[1])*(*p).w[0]*(*p).w[0]-L[3]*cos((*p).theta[2])*(*p).w[1]*(*p).w[1]+w1*w1*L[1]*cos((*p).theta[0]); b[1]=L[2]*sin((*p).theta[1])*(*p).w[0]*(*p).w[0]-L[3]*sin((*p).theta[2])*(*p).w[1]*(*p).w[1]+w1*w1*L[1]*sin((*p).theta[0]); b[2]=L[0]*cos((*p).theta[1]-Alpha)*(*p).w[0]*(*p).w[0]+L[3]*cos((*p).theta[2])*(*p).w[1]*(*p).w[1]+L[5]*cos((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[6]*cos((*p).theta[4])*(*p).w[3]*(*p).w[3]; b[3]=L[0]*sin((*p).theta[1]-Alpha)*(*p).w[0]*(*p).w[0]+L[3]*sin((*p).theta[2])*(*p).w[1]*(*p).w[1]+L[5]*sin((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[6]*sin((*p).theta[4])*(*p).w[3]*(*p).w[3]; if(agaus(a,b,4)!=0) for(m=0;m<4;m++) (*p).alpha[m]=b[m]; (*p).XYe[0]=XG+L[6]*cos((*p).theta[4])-L[5]*cos((*p).theta[3]); (*p).XYe[1]=YG+L[6]*sin((*p).theta[4])-L[5]*sin((*p).theta[3]); (*p).Ve[0]=-L[6]*sin((*p).theta[4])*(*p).w[3]+L[5]*sin((*p).theta[3])*(*p).w[2]; (*p).Ve[1]=L[6]*cos((*p).theta[4])*(*p).w[3]-L[5]*cos((*p).theta[3])*(*p).w[2]; (*p).Ve[2]=sqrt((*p).Ve[0]* (*p).Ve[0]+(*p).Ve[1]*(*p).Ve[1]); (*p).ae[0]=-L[6]*cos((*p).theta[4])*(*p).w[3]*(*p).w[3]-L[6]*sin((*p).theta[4])*(*p).alpha[3]+L[5]*cos((*p).theta[3])*(*p).w[2]*(*p).w[2]+L[5]*sin((*p).theta[3])*(*p).alpha[2]; (*p).ae[1]=-L[6]*sin((*p).theta[4])*(*p).w[3]*(*p).w[3]+L[6]*cos((*p).theta[4])*(*p).alpha[3]+L[5]*sin((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[5]*cos((*p).theta[3])*(*p).alpha[2]; (*p).ae[2]=sqrt((*p).ae[0]*(*p).ae[0]+(*p).ae[1]*(*p).ae[1]); fprintf(fp,"%d\t",(*p).theta1); for(m=0;m<=4;m++) fprintf(fp,"%lf\t",(*p).theta[m]); for(m=0;m<=3;m++) fprintf(fp,"%lf\t",(*p).w[m]); for(m=0;m<=3;m++) fprintf(fp,"%lf\t",(*p).alpha[m]); for(m=0;m<=1;m++) fprintf(fp,"%lf\t",(*p).XYe[m]); for(m=0;m<=2;m++) fprintf(fp,"%lf\t",(*p).Ve[m]); for(m=0;m<=2;m++) fprintf(fp,"%lf\t",(*p).ae[m]); fprintf(fp,"\n"); } fclose(fp); } void dnetnf(x,y,n) int n; double x[],y[]; { y[0]=L[1]*cos((*p).theta[0])+L[2]*cos(x[0])-L[3]*cos(x[1])-L[4]; y[1]=L[1]*sin((*p).theta[0])+L[2]*sin(x[0])-L[3]*sin(x[1]); y[2]=L[3]*cos(x[1])+L[0]*cos(x[0]-Alpha)+L[5]*cos(x[2])-L[6]*cos(x[3])-XG+L[4]; y[3]=L[3]*sin(x[1])+L[0]*sin(x[0]-Alpha)+L[5]*sin(x[2])-L[6]*sin(x[3])-YG; n=n; return; } 5、 计算成果和曲线图: ①各从动件旳角位移与θ1旳关系曲线和计算数据: θ1 θ2 θ3 θ5 θ6 0 0 0.656023 1.267191 2.309382 1.934332 10 0.174533 0.593275 1.2122 1.961107 1.449734 20 0.349066 0.539194 1.180673 1.759048 1.158217 30 0.523599 0.495565 1.172481 1.619778 0.983385 40 0.698132 0.462477 1.185132 1.503475 0.881119 50 0.872665 0.439043 1.215017 1.389362 0.819504 60 1.047198 0.424028 1.258361 1.262215 0.768284 70 1.22173 0.41622 1.311719 1.10307 0.689658 80 1.396263 0.414588 1.372139 0.883043 0.529201 90 1.570796 0.418327 1.437153 0.581597 0.236642 100 1.745329 0.426832 1.504701 0.245608 -0.15137 110 1.919862 0.439665 1.573043 -0.03764 -0.52821 120 2.094395 0.456512 1.640689 -0.23518 -0.83791 130 2.268928 0.47714 1.706339 -0.36101 -1.08001 140 2.443461 0.501363 1.76885 -0.43869 -1.26961 150 2.617994 0.529 1.827209 -0.4876 -1.42069 160 2.792527 0.559848 1.880524 -0.52159 -1.54342 170 2.96706 0.593647 1.928018 -0.55031 -1.645 180 3.141593 0.630052 1.969024 -0.58041 -1.73079 190 3.316126 0.668611 2.002982 -0.61636 -1.80516 200 3.490659 0.708746 2.029422 -0.66098 -1.87196 210 3.665191 0.749737 2.047947 -0.71577 -1.93462 220 3.839724 0.790716 2.058204 -0.78126 -1.99607 230 4.014257 0.830657 2.059856 -0.85725 -2.05844 240 4.18879 0.868371 2.052548 -0.94311 -2.12277 250 4.363323 0.902499 2.035877 -1.03816 -2.18875 260 4.537856 0.931516 2.009384 -1.14201 -2.25475 270 4.712389 0.953731 1.972557 -1.25487 -2.31806 280 4.886922 0.967327 1.924878 -1.37782 -2.37541 290 5.061455 0.970437 1.865936 -1.51275 -2.42369 300 5.235988 0.961305 1.795638 -1.66223 -2.46099 310 5.410521 0.938569 1.714542 -1.82937 -2.48808 320 5.585054 0.90169 1.624345 -2.01888 -2.51175 330 5.759587 0.851496 1.528412 -2.24561 -2.55873 340 5.934119 0.790634 1.432113 -2.60336 -2.77434 350 6.108652 0.723602 1.342527 -3.34217 -3.56336 360 6.283185 0.656023 1.267191 -3.9738 -4.34885 ②各从动件角速度与θ1旳关系曲线和计算成果: ω2 ω3 ω5 ω6 0 -0.37795 -0.37795 -2.67285 -3.55065 10 -0.33738 -0.2492 -1.46626 -2.12679 20 -0.28069 -0.11229 -0.92514 -1.28363 30 -0.21926 0.015911 -0.70654 -0.76008 40 -0.16081 0.125518 -0.64485 -0.4414 50 -0.10893 0.213289 -0.67648 -0.29273 60 -0.0643 0.280093 -0.79782 -0.32917 70 -0.02617 0.328526 -1.05428 -0.62445 80 0.006704 0.361488 -1.49479 -1.27316 90 0.035565 0.38156 -1.9127 -2.04408 100 0.061481 0.390826 -1.84048 -2.28284 110 0.085281 0.390901 -1.37725 -1.98454 120 0.107552 0.383027 -0.90373 -1.56836 130 0.128656 0.368182 -0.56169 -1.22165 140 0.148743 0.347174 -0.34696 -0.96448 150 0.167764 0.320717 -0.22655 -0.77636 160 0.185483 0.289483 -0.17209 -0.6368 170 0.96 0.254119 -0.16332 -0.53225 180 0.215247 0.215247 -0.18581 -0.45496 190 0.226059 0.173436 -0.22879 -0.40093 200 0.233166 0.129166 -0.28388 -0.36777 210 0.235731 0.082778 -0.34451 -0.35307 220 0.232875 0.034444 -0.40574 -0.35317 230 0.223679 -0.01585 -0.46434 -0.3626 240 0.207191 -0.06829 -0.51886 -0.37424 250 0.182436 -0.12318 -0.56994 -0.38025 260 0.148451 -0.18089 -0.62024 -0.37344 270 0.104373 -0.24162 -0.67411 -0.34886 280 0.049631 -0.30515 -0.73659 -0.30521 290 -0.0157 -0.37039 -0.81211 -0.24612 300 -0.09029 -0.43469 -0.90377 -0.18183 310 -0.17082 -0.49304 -1.01549 -0.13413 320 -0.25104 -0.53737 -1.16684 -0.1577 330 -0.32162 -0.55679 -1.49038 -0.47584 340 -0.37144 -0.53983 -3.03617 -2.62664 350 -0.39118 -0.47936 -4.53764 -5.32839 360 -0.37795 -0.37795 -2.67285 -3.55065 ③各从动件角加速度与θ1旳关系曲线和计算成果 α2 α3 α5 α6 0 0.163163 0.676583 9.623839 10.37457 10 0.290476 0.779658 4.583237 6.170388 20 0.347896 0.772585 1.947983 3.747622 30 0.348653 0.687151 0.705986 2.352497 40 0.317786 0.566044 0.057948 1.330158 50 0.276229 0.440802 -0.41751 0.360502 60 0.236019 0.327323 -1.01754 -0.84794 70 0.63 0.2305 -1.99224 -2.65699 80 0.175725 0.149699 -2.89533 -4.61522 90 0.156019 0.082297 -1.29346 -3.39779 100 0.141753 0.025417 1.949939 0.588811 110 0.131532 -0.02338 2.942659 2.360411 120 0.124017 -0.06592 2.368658 2.249653 130 0.117956 -0.10343 1.565496 1.716149 140 0.112174 -0.13663 0.928895 1.253273 150 0.105565 -0.1659 0.478073 0.922404 160 0.0971 -0.1914 0.165095 0.689558 170 0.085859 -0.21325 -0.051 0.515745 180 0.071064 -0.23165 -0.19655 0.373499 190 0.052104 -0.247 -0.28803 0.24778 200 0.02853 -0.25997 -0.33698 0.134368 210 0.000029 -0.27144 -0.35304 0.037497 220 -0.03363 -0.28244 -0.34556 -0.0334 230 -0.07266 -0.29404 -0.32449 -0.06772 240 -0.11722 -0.30716 -0.30094 -0.05805 250 -0.16738 -0.3223 -0.28693 -0.00381 260 -0.2229 -0.33924 -0.29371 0.0867 270 -0.28278 -0.3565 -0.32854 0.196347 280 -0.3445 -0.37052 -0.39172 0.300513 290 -0.40291 -0.37457 -0.47651 0.367195 300 -0.44882 -0.35752 -0.57666 0.350054 310 -0.46799 -0.30342 -0.71698 0.151732 320 -0.44227 -0.19401 -1.10288 -0.57763 330 -0.35557 -0.01707 -3.2752 -4.05407 340 -0.20589 0.218804 -17.5054 -25.2675 350 -0.0173 0.471881 7.527736 4.827787 360 0.163163 0.676583 9.623839 10.37457 ④E点运动分析成果: θ1 θ2 θ3 θ5 θ6 ω2 ω3 ω5 ω6 α2 α3 α5 α6 Xe Ye Vex Vey Ve aex aey ae 0 0 0.656023 1.267191 2.309382 1.934332 -0.37795 -0.37795 -2.67285 -3.55065 0.163163 0.676583 9.623839 10.37457 167.77 39.63004 14.97828 -30.3383 33.8343 -51.0034 17.7968 54.01922 10 0.174533 0.593275 1.2122 1.961107 1.449734 -0.33738 -0.2492 -1.46626 -2.12679 0.290476 0.779658 4.583237 6.170388 169.6075 34.70422 6.134785 -25.6121 26.33661 -49.1205 34.75809 60.17431 20 0.349066 0.539194 1.180673 1.759048 1.158217 -0.28069 -0.11229 -0.92514 -1.28363 0.347896 0.772585 1.947983 3.747622 169.962 30.80999 -1.86453 -18.8233 18.91543 -42.0293 41.29398 58.92074 30 0.523599 0.495565 1.172481 1.619778 0.983385 -0.21926 0.015911 -0.70654 -0.76008 0.348653 0.687151 0.705986 2.352497 169.0395 28.15071 -8.45887 -11.7211 14.45465 -33.5427 38.91304 51.37446 40 0.698132 0.462477 1.185132 1.503475 0.881119 -0.16081 0.125518 -0.64485 -0.4414 0.317786 0.566044 0.057948 1.330158 167.0931 26.6642 -13.6198 -5.52915 14.69933 -25.8018 31.53978 40.74915 50 0.872665 0.439043 1.215017 1.389362 0.819504 -0.10893 0.213289 -0.67648 -0.29273 0.276229 0.440802 -0.41751 0.360502 164.3574 26.13484 -17.5409 -0.79621 17.55894 -19.3348 22.66188 29.78919 60 1.047198 0.424028 1.258361 1.262215 0.768284 -0.0643 0.280093 -0.79782 -0.32917 0.236019 0.327323 -1.01754 -0.84794 161.0301 26.29742 -20.4301 2.417518 20.57268 -13.9173 14.36658 20.00223 70 1.22173 0.41622 1.311719 1.10307 0.689658 -0.02617 0.328526 -1.05428 -0.62445 0.63 0.2305 -1.99224 -2.65699 157.2771 26.90154 -22.4388 4.307739 22.84858 -9.18975 7.580538 11.91285 80 1.396263 0.414588 1.372139 0.883043 0.529201 0.006704 0.361488 -1.49479 -1.27316 0.175725 0.149699 -2.89533 -4.61522 153.2431 27.7411 -23.6629 5.166949 24.22046 -4.89573 2.560739 5.524997 90 1.570796 0.418327 1.437153 0.581597 0.236642 0.035565 0.38156 -1.9127 -2.04408 0.156019 0.082297 -1.29346 -3.39779 149.0591 28.66302 -24.1658 5.301259 24.74048 -0.91606 -0.74992 1.183865 100 1.745329 0.426832 1.504701 0.245608 -0.15137 0.061481 0.390826 -1.84048 -2.28284 0.141753 0.025417 1.949939 0.588811 144.8465 29.56598 -24 4.994033 24.51409 2.763608 -2.53456 3.749867 110 1.919862 0.439665 1.573043 -0.03764 -0.52821 0.085281 0.390901 -1.37725 -1.98454 0.131532 -0.02338 2.942659 2.360411 140.7172 30.39502 -23.2214 4.49208 23.65193 6.093834 -3.02109 6.801604 120 2.094395 0.456512 1.640689 -0.23518 -0.83791 0.107552 0.383027 -0.90373 -1.56836 0.124017 -0.06592 2.368658 2.249653 136.7724 31.13471 -21.8978 4.000787 22.26026 8.995492 -2.45402 9.32422 130 2.268928 0.47714 1.706339 -0.36101 -1.08001 0.128656 0.368182 -0.56169 -1.22165 0.117956 -0.10343 1.565496 1.716149 133.1004 31.80168 -20.1112 3.681994 20.44547 11.38586 -1.08748 11.43768 140 2.443461 0.501363 1.76885 -0.43869 -1.26961 0.148743 0.347174 -0.34696 -0.96448 0.112174 -0.13663 0.928895 1.253273 129.7737 32.43689 -17.957 3.652453 18.3247 13.19907 0.816332 13.22429 150 2.617994 0.529 1.827209 -0.4876 -1.42069 0.167764 0.320717 -0.22655 -0.77636 0.105565 -0.1659 0.478073 0.922404 126.8475 33.09765 -15.5394 3.982695 16.04168 14.40239 2.990945 14.70968 160 2.792527 0.559848 1.880524 -0.52159 -1.54342 0.185483 0.289483 -0.17209 -0.6368 0.0971 -0.1914 0.165095 0.689558 124.3586 33.84954 -12.9645 4.696969 13.78909 15.00854 5.174368 15.87546 170 2.96706 0.593647 1.928018 -0.55031 -1.645 0.96 0.254119 -0.16332 -0.53225 0.085859 -0.21325 -0.051 0.515745 122.3254 34.75845 -10.3315 5.775132 11.83605 15.0828 7.122412 16.67991 180 3.141593 0.630052 1.969024 -0.58041 -1.73079 0.215247 0.215247 -0.18581 -0.45496 0.071064 -0.23165 -0.19655 0.373499 120.7507 35.88318 -7.72373 7.157096 10.52996 14.74355 8.624016 17.08057 190 3.316126 0.668611 2.002982 -0.61636 -1.80516 0.226059
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服