资源描述
平面六杆机构旳运动分析
(题号 1 - B)
成 绩 ___________________________
指引教师
班 级
学 号
姓 名
1、题目阐明
如右图所示平面六杆机构,试用计算机完毕其运动分析。
已知其尺寸参数如下表所示:
组号
L1
L2
L2’
L3
L4
L5
L6
α
xG
yG
1-B
24.0
105.6
65.0
67.5
87.5
34.4
25.0
600
153.5
41.7
题目规定:
三人一组计算出原动件从0到360时(计算点数37)所规定旳各运动变量旳大小,并绘出运动曲线图及轨迹曲线。
2、题目分析
1) 建立封闭图形:
L1 + L2= L3+ L4
L1 + L2= L5+ L6+AG
2) 机构运动分析
a、角位移分析
由图形封闭性得:
将上式化简可得:
b、角速度分析
上式对时间求一阶导数,可得速度方程:
化为矩阵形式为:
c、角加速度分析:
矩阵对时间求一阶导数,可得加速度矩阵为:
d、E点旳运动状态
位移:
速度:
加速度:
3、 流程图
4、 源程序
#include <math.h>
#include <stdio.h>
#include "agaus.c"
#include "dnetn.c"
#include "conio.h"
#define Alpha (PI/3)
#define PI 3.979
#define Angle (PI/180)
FILE *fp;
struct motion
{
int theta1;
double theta[5]; /*theta1,2,3,5,6*/
double w[4];/*w2,3,5,6*/
double alpha[4];
double XYe[2],Ve[3],ae[3];
};
struct motion mot[37];
struct motion *p;
int k=100;
double L[7]={65.0,24.0,105.6,67.5,87.5,34.4,25.0};
double XG=153.5;
double YG=41.7;
double w1=1.0;
double t=0.1;
double h=0.1;
double eps=0.0000001;
main()
{
int n,i,m;
double x[4]={26.23*Angle,49.75*Angle,87.16*Angle,37.25*Angle};
fp=fopen("num-output.txt","w");
for(n=0,p=mot;n<=36;n++,p++)
{ double a[4][4];
double b[4];
(*p).theta1=n*10;
(*p).theta[0]=n*10*Angle;
i=dnetn(4,eps,t,h,x,k);
for(m=0;m<4;m++)
(*p).theta[m+1]=x[m];
printf("%d %d",n,i);
getchar();
a[0][0]=-L[2]*sin((*p).theta[1]);
a[0][1]=L[3]*sin((*p).theta[2]);
a[0][2]=0.;
a[0][3]=0.;
a[1][0]=L[2]*cos((*p).theta[1]);
a[1][1]=-L[3]*cos((*p).theta[2]);
a[1][2]=0.;
a[1][3]=0.;
a[2][0]=-L[0]*sin((*p).theta[1]-Alpha);
a[2][1]=-L[3]*sin((*p).theta[2]);
a[2][2]=-L[5]*sin((*p).theta[3]);
a[2][3]=L[6]*sin((*p).theta[4]);
a[3][0]=L[0]*cos((*p).theta[1]-Alpha);
a[3][1]=L[3]*cos((*p).theta[2]);
a[3][2]=L[5]*cos((*p).theta[3]);
a[3][3]=-L[6]*cos((*p).theta[4]);
b[0]=L[1]*sin((*p).theta[0])*w1;
b[1]=-L[1]*cos((*p).theta[0])*w1;
b[2]=0.;
b[3]=0.;
if(agaus(a,b,4)!=0)
for(m=0;m<4;m++)
(*p).w[m]=b[m];
a[0][0]=-L[2]*sin((*p).theta[1]);
a[0][1]=L[3]*sin((*p).theta[2]);
a[0][2]=0.;
a[0][3]=0.;
a[1][0]=L[2]*cos((*p).theta[1]);
a[1][1]=-L[3]*cos((*p).theta[2]);
a[1][2]=0.;
a[1][3]=0.;
a[2][0]=-L[0]*sin((*p).theta[1]-Alpha);
a[2][1]=-L[3]*sin((*p).theta[2]);
a[2][2]=-L[5]*sin((*p).theta[3]);
a[2][3]=L[6]*sin((*p).theta[4]);
a[3][0]=L[0]*cos((*p).theta[1]-Alpha);
a[3][1]=L[3]*cos((*p).theta[2]);
a[3][2]=L[5]*cos((*p).theta[3]);
a[3][3]=-L[6]*cos((*p).theta[4]);
b[0]=L[2]*cos((*p).theta[1])*(*p).w[0]*(*p).w[0]-L[3]*cos((*p).theta[2])*(*p).w[1]*(*p).w[1]+w1*w1*L[1]*cos((*p).theta[0]);
b[1]=L[2]*sin((*p).theta[1])*(*p).w[0]*(*p).w[0]-L[3]*sin((*p).theta[2])*(*p).w[1]*(*p).w[1]+w1*w1*L[1]*sin((*p).theta[0]);
b[2]=L[0]*cos((*p).theta[1]-Alpha)*(*p).w[0]*(*p).w[0]+L[3]*cos((*p).theta[2])*(*p).w[1]*(*p).w[1]+L[5]*cos((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[6]*cos((*p).theta[4])*(*p).w[3]*(*p).w[3];
b[3]=L[0]*sin((*p).theta[1]-Alpha)*(*p).w[0]*(*p).w[0]+L[3]*sin((*p).theta[2])*(*p).w[1]*(*p).w[1]+L[5]*sin((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[6]*sin((*p).theta[4])*(*p).w[3]*(*p).w[3];
if(agaus(a,b,4)!=0)
for(m=0;m<4;m++)
(*p).alpha[m]=b[m];
(*p).XYe[0]=XG+L[6]*cos((*p).theta[4])-L[5]*cos((*p).theta[3]);
(*p).XYe[1]=YG+L[6]*sin((*p).theta[4])-L[5]*sin((*p).theta[3]);
(*p).Ve[0]=-L[6]*sin((*p).theta[4])*(*p).w[3]+L[5]*sin((*p).theta[3])*(*p).w[2];
(*p).Ve[1]=L[6]*cos((*p).theta[4])*(*p).w[3]-L[5]*cos((*p).theta[3])*(*p).w[2];
(*p).Ve[2]=sqrt((*p).Ve[0]* (*p).Ve[0]+(*p).Ve[1]*(*p).Ve[1]);
(*p).ae[0]=-L[6]*cos((*p).theta[4])*(*p).w[3]*(*p).w[3]-L[6]*sin((*p).theta[4])*(*p).alpha[3]+L[5]*cos((*p).theta[3])*(*p).w[2]*(*p).w[2]+L[5]*sin((*p).theta[3])*(*p).alpha[2];
(*p).ae[1]=-L[6]*sin((*p).theta[4])*(*p).w[3]*(*p).w[3]+L[6]*cos((*p).theta[4])*(*p).alpha[3]+L[5]*sin((*p).theta[3])*(*p).w[2]*(*p).w[2]-L[5]*cos((*p).theta[3])*(*p).alpha[2];
(*p).ae[2]=sqrt((*p).ae[0]*(*p).ae[0]+(*p).ae[1]*(*p).ae[1]);
fprintf(fp,"%d\t",(*p).theta1);
for(m=0;m<=4;m++)
fprintf(fp,"%lf\t",(*p).theta[m]);
for(m=0;m<=3;m++)
fprintf(fp,"%lf\t",(*p).w[m]);
for(m=0;m<=3;m++)
fprintf(fp,"%lf\t",(*p).alpha[m]);
for(m=0;m<=1;m++)
fprintf(fp,"%lf\t",(*p).XYe[m]);
for(m=0;m<=2;m++)
fprintf(fp,"%lf\t",(*p).Ve[m]);
for(m=0;m<=2;m++)
fprintf(fp,"%lf\t",(*p).ae[m]);
fprintf(fp,"\n");
}
fclose(fp);
}
void dnetnf(x,y,n)
int n;
double x[],y[];
{
y[0]=L[1]*cos((*p).theta[0])+L[2]*cos(x[0])-L[3]*cos(x[1])-L[4];
y[1]=L[1]*sin((*p).theta[0])+L[2]*sin(x[0])-L[3]*sin(x[1]);
y[2]=L[3]*cos(x[1])+L[0]*cos(x[0]-Alpha)+L[5]*cos(x[2])-L[6]*cos(x[3])-XG+L[4];
y[3]=L[3]*sin(x[1])+L[0]*sin(x[0]-Alpha)+L[5]*sin(x[2])-L[6]*sin(x[3])-YG;
n=n;
return;
}
5、 计算成果和曲线图:
①各从动件旳角位移与θ1旳关系曲线和计算数据:
θ1
θ2
θ3
θ5
θ6
0
0
0.656023
1.267191
2.309382
1.934332
10
0.174533
0.593275
1.2122
1.961107
1.449734
20
0.349066
0.539194
1.180673
1.759048
1.158217
30
0.523599
0.495565
1.172481
1.619778
0.983385
40
0.698132
0.462477
1.185132
1.503475
0.881119
50
0.872665
0.439043
1.215017
1.389362
0.819504
60
1.047198
0.424028
1.258361
1.262215
0.768284
70
1.22173
0.41622
1.311719
1.10307
0.689658
80
1.396263
0.414588
1.372139
0.883043
0.529201
90
1.570796
0.418327
1.437153
0.581597
0.236642
100
1.745329
0.426832
1.504701
0.245608
-0.15137
110
1.919862
0.439665
1.573043
-0.03764
-0.52821
120
2.094395
0.456512
1.640689
-0.23518
-0.83791
130
2.268928
0.47714
1.706339
-0.36101
-1.08001
140
2.443461
0.501363
1.76885
-0.43869
-1.26961
150
2.617994
0.529
1.827209
-0.4876
-1.42069
160
2.792527
0.559848
1.880524
-0.52159
-1.54342
170
2.96706
0.593647
1.928018
-0.55031
-1.645
180
3.141593
0.630052
1.969024
-0.58041
-1.73079
190
3.316126
0.668611
2.002982
-0.61636
-1.80516
200
3.490659
0.708746
2.029422
-0.66098
-1.87196
210
3.665191
0.749737
2.047947
-0.71577
-1.93462
220
3.839724
0.790716
2.058204
-0.78126
-1.99607
230
4.014257
0.830657
2.059856
-0.85725
-2.05844
240
4.18879
0.868371
2.052548
-0.94311
-2.12277
250
4.363323
0.902499
2.035877
-1.03816
-2.18875
260
4.537856
0.931516
2.009384
-1.14201
-2.25475
270
4.712389
0.953731
1.972557
-1.25487
-2.31806
280
4.886922
0.967327
1.924878
-1.37782
-2.37541
290
5.061455
0.970437
1.865936
-1.51275
-2.42369
300
5.235988
0.961305
1.795638
-1.66223
-2.46099
310
5.410521
0.938569
1.714542
-1.82937
-2.48808
320
5.585054
0.90169
1.624345
-2.01888
-2.51175
330
5.759587
0.851496
1.528412
-2.24561
-2.55873
340
5.934119
0.790634
1.432113
-2.60336
-2.77434
350
6.108652
0.723602
1.342527
-3.34217
-3.56336
360
6.283185
0.656023
1.267191
-3.9738
-4.34885
②各从动件角速度与θ1旳关系曲线和计算成果:
ω2
ω3
ω5
ω6
0
-0.37795
-0.37795
-2.67285
-3.55065
10
-0.33738
-0.2492
-1.46626
-2.12679
20
-0.28069
-0.11229
-0.92514
-1.28363
30
-0.21926
0.015911
-0.70654
-0.76008
40
-0.16081
0.125518
-0.64485
-0.4414
50
-0.10893
0.213289
-0.67648
-0.29273
60
-0.0643
0.280093
-0.79782
-0.32917
70
-0.02617
0.328526
-1.05428
-0.62445
80
0.006704
0.361488
-1.49479
-1.27316
90
0.035565
0.38156
-1.9127
-2.04408
100
0.061481
0.390826
-1.84048
-2.28284
110
0.085281
0.390901
-1.37725
-1.98454
120
0.107552
0.383027
-0.90373
-1.56836
130
0.128656
0.368182
-0.56169
-1.22165
140
0.148743
0.347174
-0.34696
-0.96448
150
0.167764
0.320717
-0.22655
-0.77636
160
0.185483
0.289483
-0.17209
-0.6368
170
0.96
0.254119
-0.16332
-0.53225
180
0.215247
0.215247
-0.18581
-0.45496
190
0.226059
0.173436
-0.22879
-0.40093
200
0.233166
0.129166
-0.28388
-0.36777
210
0.235731
0.082778
-0.34451
-0.35307
220
0.232875
0.034444
-0.40574
-0.35317
230
0.223679
-0.01585
-0.46434
-0.3626
240
0.207191
-0.06829
-0.51886
-0.37424
250
0.182436
-0.12318
-0.56994
-0.38025
260
0.148451
-0.18089
-0.62024
-0.37344
270
0.104373
-0.24162
-0.67411
-0.34886
280
0.049631
-0.30515
-0.73659
-0.30521
290
-0.0157
-0.37039
-0.81211
-0.24612
300
-0.09029
-0.43469
-0.90377
-0.18183
310
-0.17082
-0.49304
-1.01549
-0.13413
320
-0.25104
-0.53737
-1.16684
-0.1577
330
-0.32162
-0.55679
-1.49038
-0.47584
340
-0.37144
-0.53983
-3.03617
-2.62664
350
-0.39118
-0.47936
-4.53764
-5.32839
360
-0.37795
-0.37795
-2.67285
-3.55065
③各从动件角加速度与θ1旳关系曲线和计算成果
α2
α3
α5
α6
0
0.163163
0.676583
9.623839
10.37457
10
0.290476
0.779658
4.583237
6.170388
20
0.347896
0.772585
1.947983
3.747622
30
0.348653
0.687151
0.705986
2.352497
40
0.317786
0.566044
0.057948
1.330158
50
0.276229
0.440802
-0.41751
0.360502
60
0.236019
0.327323
-1.01754
-0.84794
70
0.63
0.2305
-1.99224
-2.65699
80
0.175725
0.149699
-2.89533
-4.61522
90
0.156019
0.082297
-1.29346
-3.39779
100
0.141753
0.025417
1.949939
0.588811
110
0.131532
-0.02338
2.942659
2.360411
120
0.124017
-0.06592
2.368658
2.249653
130
0.117956
-0.10343
1.565496
1.716149
140
0.112174
-0.13663
0.928895
1.253273
150
0.105565
-0.1659
0.478073
0.922404
160
0.0971
-0.1914
0.165095
0.689558
170
0.085859
-0.21325
-0.051
0.515745
180
0.071064
-0.23165
-0.19655
0.373499
190
0.052104
-0.247
-0.28803
0.24778
200
0.02853
-0.25997
-0.33698
0.134368
210
0.000029
-0.27144
-0.35304
0.037497
220
-0.03363
-0.28244
-0.34556
-0.0334
230
-0.07266
-0.29404
-0.32449
-0.06772
240
-0.11722
-0.30716
-0.30094
-0.05805
250
-0.16738
-0.3223
-0.28693
-0.00381
260
-0.2229
-0.33924
-0.29371
0.0867
270
-0.28278
-0.3565
-0.32854
0.196347
280
-0.3445
-0.37052
-0.39172
0.300513
290
-0.40291
-0.37457
-0.47651
0.367195
300
-0.44882
-0.35752
-0.57666
0.350054
310
-0.46799
-0.30342
-0.71698
0.151732
320
-0.44227
-0.19401
-1.10288
-0.57763
330
-0.35557
-0.01707
-3.2752
-4.05407
340
-0.20589
0.218804
-17.5054
-25.2675
350
-0.0173
0.471881
7.527736
4.827787
360
0.163163
0.676583
9.623839
10.37457
④E点运动分析成果:
θ1
θ2
θ3
θ5
θ6
ω2
ω3
ω5
ω6
α2
α3
α5
α6
Xe
Ye
Vex
Vey
Ve
aex
aey
ae
0
0
0.656023
1.267191
2.309382
1.934332
-0.37795
-0.37795
-2.67285
-3.55065
0.163163
0.676583
9.623839
10.37457
167.77
39.63004
14.97828
-30.3383
33.8343
-51.0034
17.7968
54.01922
10
0.174533
0.593275
1.2122
1.961107
1.449734
-0.33738
-0.2492
-1.46626
-2.12679
0.290476
0.779658
4.583237
6.170388
169.6075
34.70422
6.134785
-25.6121
26.33661
-49.1205
34.75809
60.17431
20
0.349066
0.539194
1.180673
1.759048
1.158217
-0.28069
-0.11229
-0.92514
-1.28363
0.347896
0.772585
1.947983
3.747622
169.962
30.80999
-1.86453
-18.8233
18.91543
-42.0293
41.29398
58.92074
30
0.523599
0.495565
1.172481
1.619778
0.983385
-0.21926
0.015911
-0.70654
-0.76008
0.348653
0.687151
0.705986
2.352497
169.0395
28.15071
-8.45887
-11.7211
14.45465
-33.5427
38.91304
51.37446
40
0.698132
0.462477
1.185132
1.503475
0.881119
-0.16081
0.125518
-0.64485
-0.4414
0.317786
0.566044
0.057948
1.330158
167.0931
26.6642
-13.6198
-5.52915
14.69933
-25.8018
31.53978
40.74915
50
0.872665
0.439043
1.215017
1.389362
0.819504
-0.10893
0.213289
-0.67648
-0.29273
0.276229
0.440802
-0.41751
0.360502
164.3574
26.13484
-17.5409
-0.79621
17.55894
-19.3348
22.66188
29.78919
60
1.047198
0.424028
1.258361
1.262215
0.768284
-0.0643
0.280093
-0.79782
-0.32917
0.236019
0.327323
-1.01754
-0.84794
161.0301
26.29742
-20.4301
2.417518
20.57268
-13.9173
14.36658
20.00223
70
1.22173
0.41622
1.311719
1.10307
0.689658
-0.02617
0.328526
-1.05428
-0.62445
0.63
0.2305
-1.99224
-2.65699
157.2771
26.90154
-22.4388
4.307739
22.84858
-9.18975
7.580538
11.91285
80
1.396263
0.414588
1.372139
0.883043
0.529201
0.006704
0.361488
-1.49479
-1.27316
0.175725
0.149699
-2.89533
-4.61522
153.2431
27.7411
-23.6629
5.166949
24.22046
-4.89573
2.560739
5.524997
90
1.570796
0.418327
1.437153
0.581597
0.236642
0.035565
0.38156
-1.9127
-2.04408
0.156019
0.082297
-1.29346
-3.39779
149.0591
28.66302
-24.1658
5.301259
24.74048
-0.91606
-0.74992
1.183865
100
1.745329
0.426832
1.504701
0.245608
-0.15137
0.061481
0.390826
-1.84048
-2.28284
0.141753
0.025417
1.949939
0.588811
144.8465
29.56598
-24
4.994033
24.51409
2.763608
-2.53456
3.749867
110
1.919862
0.439665
1.573043
-0.03764
-0.52821
0.085281
0.390901
-1.37725
-1.98454
0.131532
-0.02338
2.942659
2.360411
140.7172
30.39502
-23.2214
4.49208
23.65193
6.093834
-3.02109
6.801604
120
2.094395
0.456512
1.640689
-0.23518
-0.83791
0.107552
0.383027
-0.90373
-1.56836
0.124017
-0.06592
2.368658
2.249653
136.7724
31.13471
-21.8978
4.000787
22.26026
8.995492
-2.45402
9.32422
130
2.268928
0.47714
1.706339
-0.36101
-1.08001
0.128656
0.368182
-0.56169
-1.22165
0.117956
-0.10343
1.565496
1.716149
133.1004
31.80168
-20.1112
3.681994
20.44547
11.38586
-1.08748
11.43768
140
2.443461
0.501363
1.76885
-0.43869
-1.26961
0.148743
0.347174
-0.34696
-0.96448
0.112174
-0.13663
0.928895
1.253273
129.7737
32.43689
-17.957
3.652453
18.3247
13.19907
0.816332
13.22429
150
2.617994
0.529
1.827209
-0.4876
-1.42069
0.167764
0.320717
-0.22655
-0.77636
0.105565
-0.1659
0.478073
0.922404
126.8475
33.09765
-15.5394
3.982695
16.04168
14.40239
2.990945
14.70968
160
2.792527
0.559848
1.880524
-0.52159
-1.54342
0.185483
0.289483
-0.17209
-0.6368
0.0971
-0.1914
0.165095
0.689558
124.3586
33.84954
-12.9645
4.696969
13.78909
15.00854
5.174368
15.87546
170
2.96706
0.593647
1.928018
-0.55031
-1.645
0.96
0.254119
-0.16332
-0.53225
0.085859
-0.21325
-0.051
0.515745
122.3254
34.75845
-10.3315
5.775132
11.83605
15.0828
7.122412
16.67991
180
3.141593
0.630052
1.969024
-0.58041
-1.73079
0.215247
0.215247
-0.18581
-0.45496
0.071064
-0.23165
-0.19655
0.373499
120.7507
35.88318
-7.72373
7.157096
10.52996
14.74355
8.624016
17.08057
190
3.316126
0.668611
2.002982
-0.61636
-1.80516
0.226059
展开阅读全文