资源描述
高一数学必修一
第一节 集合
[知识要点]
一、集合的含义及其表示
1、一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。
集合的性质:
(1)确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
班级中成绩好的同学构成一个集合吗?
(2)无序性:一个给定集合中的元素是唯一的,不可重复的。
班级位置调换一下,这个集合发生变化了吗?
(3)互异性:集合中元素的位置是可以改变的,并且改变位置不影响集合。
集合中任意两个元素是不相同的。
如:已知集合A={1,2,a},则a应满足什么条件?
常用数集及记法
(1)自然数集:记作N (2)正整数集:记作
(3)整数集:记作Z (4)有理数集:记作Q 例如根号2
(5)实数集:记作R
例:下列各种说法中,各自所表述的对象是否确定,为什么?
(1)我们班的全体学生;
(2)我们班的高个子学生;
(3)地球上的四大洋;
(4)方程x2-1=0的解;
(5)不等式2x-3>0的解;
(6)直角三角形;
2、集合的表示法
(1)列举法:把集合中的元素列举在一个大括号里:{…}
(2)描述法:将集合的所有元素都具有的 性质(满足的条件)表示出来,写成{x| P(x)}的形式。
如:{x︱x为中国的直辖市}
(3)集合的分类:有限集与无限集
<1>有限集:含有有限个元素的集合。
<2>无限集:若一个集合不是有限集,就称此集合为无限集。
<3>空集:不含任何元素的集合。记作Φ,如:
二、子集、全集、补集
1、子集的定义:如果集合A的任一个元素都在集合B中 则称集合A为集合B的子集,记作:AB
特别的:
真子集的定义:如果AB并且,则称集合A为集合B的真子集。
2、补集的定义:设A为S的子集,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作:={x∣x ∈S且xA},如果集合S包含我们所要研究的各个集合,就把S称为全集。
三、交集与并集的定义
1、定义:一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集;记作:A∩B;由所有属于集合A或属于集合B的元素构成的集合,称为A与B的并集;记作:A∪B。
性质:
(1)
(2)若,则
(3)
(4)若则
(5)
归纳:1)交集:两集合的公共元素构成集合。
2)并集:把两个集合合在一起,但要注意元素的互异性。
3)基本方法:抽象的集合关系可用文恩图表示,实数集中的运算可在数轴上表示。
注意点:空集是任何集合的子集;空集与任何集合的交集仍为空集。
四、基础练习:
1. 已知A={x|3-3x>0},则下列各式正确的是( )
A.3∈A B.1∈A
C.0∈A D.-1∉A
2.高考资源网下列四个集合中,不同于另外三个的是( )
A.{y|y=2} B.{x=2}
C.{2} D.{x|x2-4x+4=0}
3.下列关系中,正确的个数为________.
①∈R;②∉Q;③|-3|∉N*;④|-|∈Q.
4.已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.
一、 选择题
1.下列命题中正确的( )
①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.
A.只有①与④ B.只有②与③
C.只有② D.以上语句都不对
2.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
3.已知集合A={x∈N*|-≤x≤},则必有( )
A.-1∈A B.0∈A
C.∈A D.1∈A
4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之与为( )
A.0 B.2
C.3 D.6
二、 填空题
5.已知集合A={1,a2},实数a不能取的值的集合是________.
6. 已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.
三、 解答题
7.选择适当的方法表示下列集合集.
(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;
(2)大于2且小于6的有理数;
(3)由直线y=-x+4上的横坐标与纵坐标都是自然数的点组成的集合.
8.设A表示集合{a2+2a-3,2,3},B表示集合
{2,|a+3|},已知5∈A且5∉B,求a的值.
9.已知集合A={x|ax2-3x-4=0,x∈R}.
(1)若A中有两个元素,求实数a的取值范围;
(2)若A中至多有一个元素,求实数a的取值范围.
1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )
A.{x|x≥3} B.{x|x≥2}
C.{x|2≤x<3} D.{x|x≥4}
【解析】 B={x|x≥3}.画数轴(如下图所示)可知选B.
【答案】 B
2.高考资源网已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )
A.{3,5} B.{3,6}
C.{3,7} D.{3,9}
【解析】 A={1,3,5,7,9},B={0,3,6,9,12},A与B中有相同的元素3,9,∴A∩B={3,9}.故选D.
【答案】 D
3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.
【解析】
设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.
∴只参加甲项的有25人,只参加乙项的有20人,
∴仅参加一项的有45人.
【答案】 45
4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.
【解析】 ∵A∩B={9},
∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.
当a=5时,A={-4,9,25},B={0,-4,9}.
此时A∩B={-4,9}≠{9}.故a=5舍去.
当a=3时,B={-2,-2,9},不符合要求,舍去.
经检验可知a=-3符合题意.
一、选择题(每小题5分,共20分)
1.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )
A.0 B.1
C.2 D.4
【解析】 ∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},
∴{a,a2}={4,16},∴a=4,故选D.
【答案】 D
2.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )
A.Ø B.{x|x<-}
C.{x|x>} D.{x|-<x<}
【解析】 S={x|2x+1>0}={x|x>-},T={x|3x-5<0}={x|x<},则S∩T={x|-<x<}.故选D.
【答案】 D
3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )
A.{x|x≥-1} B.{x|x≤2}
C.{x|0<x≤2} D.{x|-1≤x≤2}
【解析】 集合A、B用数轴表示如图,
A∪B={x|x≥-1}.故选A.
【答案】 A
4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( )
A.1 B.2
C.3 D.4
【解析】 集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.
【答案】 B
二、填空题(每小题5分,共10分)
5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.
【解析】 A=(-∞,1],B=[a,+∞),要使A∪B=R,只需
a≤1.
【答案】 a≤1
6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.
【解析】 由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.
【答案】 4
三、解答题(每小题10分,共20分)
7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.
【解析】 由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.
若x2-1=3则x=±2;
若x2-1=5,则x=±;
综上,x=±2或±.
当x=±2时,B={1,2,3},此时A∩B={1,3};
当x=±时,B={1,2,5},此时A∩B={1,5}.
8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.
【解析】 由A∩B=Ø,
(1)若A=Ø,
有2a>a+3,∴a>3.
(2)若A≠Ø,
如图:
∴,解得-≤a≤2.
综上所述,a的取值范围是{a|-≤a≤2或a>3}.
9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学与物理小组的有6人,同时参加物理与化学小组的有4人,则同时参加数学与化学小组的有多少人?
【解析】 设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.
依题意解得
∴同时参加数学化学的同学有8人,
答:同时参加数学与化学小组的有8人.
1.集合{a,b}的子集有( )
A.1个 B.2个
C.3个 D.4个
【解析】 集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.
【答案】 D
2.下列各式中,正确的是( )
A.高考资源网2∈{x|x≤3} B.2∉{x|x≤3}
C.2⊆{x|x≤3} D.{2}{x|x≤3}
【解析】 2表示一个元素,{x|x≤3}表示一个集合,但2不在集合中,故2∉{x|x≤3},A、C不正确,又集合{2}⃘{x|x≤3},故D不正确.
【答案】 B
3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.
【解析】 若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.
【答案】 4
4.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.
【解析】
将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.
一、选择题(每小题5分,共20分)
1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )
A.5 B.6
C.7 D.8
【解析】 由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.
【答案】 C
2.在下列各式中错误的个数是( )
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};
④{0,1,2}={2,0,1}
A.1 B.2
¥资%源~网C.3 D.4
【解析】 ①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.
【答案】 A
3.已知集合A={x|-1<x<2},B={x|0<x<1},则( )
A.A>B B.AB
C.BA D.A⊆B
【解析】 如图所示,
,由图可知,BA.故选C.
【答案】 C
4.下列说法:
①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA,则A≠Ø.
其中正确的有( )
A.0个 B.1个
C.2个 D.3个
【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.
【答案】 B
二、填空题(每小题5分,共10分)
5.已知Ø{x|x2-x+a=0},则实数a的取值范围是________.
【解析】 ∵Ø{x|x2-x+a=0},
∴方程x2-x+a=0有实根,
∴Δ=(-1)2-4a≥0,a≤.
【答案】 a≤
6.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.
【解析】 ∵B⊆A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B={3,1}满足B⊆A.
【答案】 1
三、解答题(每小题10分,共20分)
7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.
【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.
(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.
(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.
综上知:x=1,y=0.
8.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.
【解析】 由x2+x-6=0,得x=2或x=-3.
因此,M={2,-3}.
若a=2,则N={2},此时NM;
若a=-3,则N={2,-3},此时N=M;
若a≠2且a≠-3,则N={2,a},
此时N不是M的子集,
故所求实数a的值为2或-3.
9.(10分)已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P={x|x=+,p∈Z},请探求集合M、N、P之间的关系.
【解析】 M={x|x=m+,m∈Z}
={x|x=,m∈Z}.
N={x|x=-,n∈Z}
=
P={x|x=+,p∈Z}
={x|x=,p∈Z}.
∵3n-2=3(n-1)+1,n∈Z.
∴3n-2,3p+1都是3的整数倍加1,
从而N=P.
而6m+1=3×2m+1是3的偶数倍加1,
∴MN=P.
第 13 页
展开阅读全文