资源描述
学年度上期目标检测题
九年级 数学
第一章 证明(Ⅱ)
班级 姓名 学号 成绩
一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.
1、两个全等三角形的对应边的比值为1 . ( )
2、两个等腰三角形一定是全等的三角形. ( )
3、等腰三角形的两条中线一定相等. ( )
4、两个三角形若两角相等,则两角所对的边也相等. ( )
5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )
二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答 案的番号填在括号内.
1、在△ABC与△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是( )
A、∠A=∠D B、∠C=∠F C、∠B=∠E D、∠C=∠D
2、下列命题中是假命题的是( )
A、两条中线相等的三角形是等腰三角形
B、两条高相等的三角形是等腰三角形
C、两个内角不相等的三角形不是等腰三角形
D、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形
3、如图(一),已知AB=AC,BE=CE,D是AE上的一点,
则下列结论不一定成立的是( )
A、∠1=∠2 B、AD=DE
C、BD=CD D、∠BDE=∠CDE
4、如图(二),已知AC与BD相交于O点,AD∥BC,AD=BC,过O (一)
任作一条直线分别交AD、BC于点E、F,则下列结论:①OA=OC
②OE=OF ③AE=CF ④OB=OD,其中成立的个数是( )
A、1 B、2 C、3 D、4
5、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)
A、5,8 B、6.5,6.5 C、5,8或6.5,6.5 D、8,6.5
6、下列长度的线段中,能构成直角三角形的一组是( )
A、 ; B、6, 7, 8;
C、12, 25, 27; D、
7、如图(三),AC=AD BC=BD,则下列结果正确的是( ) (三)
A、∠ABC=∠CAB B、OA=OB C、∠ACD=∠BDC D、AB⊥CD
8、如图(四),△ABC中,∠A=30°,∠C=90°AB的垂直平分线
交AC于D点,交AB于E点,则下列结论错误的是( )
A、AD=DB B、DE=DC
C、BC=AE D、AD=BC (四)
9、如图(五),在梯形ABCD中,∠C=90°,M是BC的中点,
DM平分∠ADC,∠CMD=35°,则∠MAB是( )
A、35° B、55°
C、70° D、20°
10、如图(六),在Rt△ABC中,AD平分∠BAC,AC=BC, (五)
∠C=Rt∠,那么,的值为( )
A、 B、
C、 D、 (六)
三、填空题,(每空2分,共20分)
1、如图(七),AD=BC,AC=BD AC及BD相交于O点,
则图中全等三角形共有 对. (七)
2、如图(八),在△ABC与△DEF中,∠A=∠D,AC=DF,若根据
“ASA”说明△ABC≌△DEF,则应添加条件 = . (八)
或 ∥ .
3、一个等腰三角形的底角为15°,腰长为4cm,那么,该三角形的面积等于 .
4、等腰三角形一腰上的高及底边的夹角等于45°,则这个三角形的顶角等于 .
5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是
A
B
.
6、用反证法证明:“任意三角形中不能有两个内角是钝角”的第一步:
假设 .
7、如图(九),一个正方体的棱长为2cm,一只蚂蚁欲从A点处沿正方体侧
面到B点处吃食物,那么它需要爬行的最短路径的长是 .
8、在Rt△ABC中,∠ACB=90°,AB=8cm, BC的垂直平分线DE交AB (九)
于D,则CD= .
9、如图(十)的(1)中,ABCD是一张正方形纸片,E,F分
别为AB,CD的中点,沿过点D的折痕将A角翻折,使得
点A落在(2)中EF上,折痕交AE于点G,那么
∠ADG= .
四、作图题(保留作图的痕迹,写出作法)(共6分) (十)
如图(十一),在∠AOB内,求作点P,使P点到OA,OB的 距离相等,
并且P点到M,N的距离也相等.
(十一)
五、解答题(5分)
如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
(十二)
六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)
1、已知:如图(十三),∥,是的中点,
求证:是中点.
(十三)
2、已知:如图(十四),AB=AD, CB=CD,E,F分别是AB,AD的中点.
求证:CE=CF .
(十四)
新 课 标 第一 网x k b1.co m
3、如图(十五),△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.
求证:(1)AD⊥EF ;
(2)当有一点G从点D向A运动时,DE⊥AB于E,
DF⊥AC于F,此时上面结论是否成立?
(十五)
4、如图(十六),△ABC、△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形.
(十六)
2009~2010学年度上期目标检测题
九年级 数学
第二章 一元二次方程
班级 姓名 学号 成绩
一、填空题(每小题2分,共36分)
1.一元二次方程的二次项系数是 ,一次项系数是 ,
常数项是 .
2.当m 时, 是一元二次方程.
3.方程的根是 ,方程的根是 .
4.方程的两根为.
5.是实数,且,则的值是 .
6.已知及的值相等,则的值是 .
7.(1),(2).
8.如果-1是方程的一个根,则方程的另一个根是 , 是 .
9.若、为方程的两根,则的值是,的值是.
10.用22cm长的铁丝,折成一个面积为的矩形,这个矩形的长是__ __.
11.甲、乙两人同时从A地出发,骑自行车去B地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A、B两地相距30千米,则乙每小时 千米.
二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.
1、已知关于的方程,(1)ax2+bx+c=0;(2)x2-4x=8+x2;(3)1+(x-1)(x+1)=0;
(4)(k2+1)x2 + kx + 1= 0中,一元二次方程的个数为( )个
A、1 B、2 C、3 D、4
2、如果是一元二次方程,则 ( )
A、 B、 C、 D、
3、已知方程的两个根是互为相反数,则m的值是 ( )
A、 B、 C、 D、
4、将方程左边变成完全平方式后,方程是( )
A、 B、 C、 D、
5、如果有两个相等的实数根,那么的两根与是 ( )
A、 -2 B、 1 C、 -1 D、 2
6、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )
A、 5% B、 10% C、15% D、 20%
三、按指定的方法解方程(每小题3分,共12分)
1.(直接开平方法) 2. (配方法)
3.(因式分解法) 4. (公式法)
四、适当的方法解方程(每小题4分,共8分)
1. 2.
五、完成下列各题(每小题5分,共15分)
1、已知函数,当时,, 求的值.
2、若分式的值为零,求的值.
3、关于的方程有实根.
(1)若方程只有一个实根,求出这个根;
(2)若方程有两个不相等的实根,,且,求的值.
六、应用问题(第1小题5分,第2小题6分,共11分)
1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端与岸边水面恰好相齐,问水深与芦苇的长度各是多少?(1丈=10尺)
2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金与利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.
2009~2010学年度上期目标检测题
九年级 数学
第三章 证明(Ⅲ)
班级 姓名 学号 成绩
图1
O
A
B
C
D
一、选择题(每题4分,共40分)下列每小题只有一个正确答案,请将正确答案的番号填在括号内.
1、如图1,在 ABCD中,O为对角线AC、BD的交点,
则图中共有相等的角( )
A、4对 B、5对 C、6对 D、8对
F
E
A
B
C
D
2、如图2,已知E、F分别为 ABCD的中点,
连接AE、CF所形成的四边形AECF的面
积及 ABCD的面积的比为( )
A、1:1 B、1:2 C、1:3 D、1:4
3、过四边形ABCD的顶点A、B、C、D作
图2
BD、AC的平行线围成四边形EFGH,若EFGH
是菱形,则四边形ABCD一定是( )
A、平行四边形 B、菱形
C、矩形 D、对角线相等的四边形
4、在菱形ABCD中, 且E、F分别是BC、CD的中点,
那么( )
A、 B、 C、45 D、
5、矩形的一条长边的中点及另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )
A、 B、5 C、 D、3
6、矩形的内角平分线能够组成一个( )
A、矩形 B、菱形 C、正方形 D、平行四边形
7、以正方形ABCD的一组邻边AD、CD向形外作等边三角形ADE、CDF,则下列结论中错误的是( )
A、BD平分 B、 C、BD D、
8、已知正方形ABCD的边长是10cm,是等边三角形,点P在BC上,点Q在CD上,则BP的边长是( )
A、cm B、cm C、cm D、cm
9、若两个三角形的两条中位线对应相等且两条中位线及一对应边的夹角相等,则这两个三角形的关系是( )
A、全等 B、周长相等 C、不全等 D、不确定
10、正方形具有而菱形不具有的性质是( )新 课 标 第一 网
A、四个角都是直角 B、两组对边分别相等
C、内角与为 D、对角线平分对角
二、填空题(每空1分,共11分)
1、平行四边形两邻边上的高分别为与,这两条高的夹角为,此平行四边形的周长为 ,面积为 .
2、等腰梯形的腰及上底相等且等于下底的一半,则该梯形的腰及下底的夹角为 .
3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .
4、在中,D为AB的中点,E为AC上一点,,BE、CD交于点O,,则 .
5、顺次连接任意四边形各边中点的连线所成的四边形是 .
6、将长为12,宽为5的矩形纸片ABCD沿对角线AC对折后,AD及BC交于点E,则DE的长度为 .
7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .
8、菱形两条对角线长度比为1:,则菱形较小的内角的度数为 .
9、正方形的一条对角线与一边所成的角是 度.
10、已知四边形ABCD是菱形,是正三角形,E、F分别在BC、CD上,且,则 .
三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)
A
B
C
D
E
F
图3
1、如图3,AB//CD,,E是AB的中点,
CE=CD,DE与AC相交于点F.
求证:(1);
(2).
2、如图4,ABCD为平行四边形,DFEC与BCGH为正方形.求证:.
A
B
C
D
E
F
H
G
图4
3、证明:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
4、从菱形钝角的顶点向对边作垂线,且垂线平分对边,求菱形各角的度数?
四、(第1、2小题各6分,第3小题7分,共19分)
图5
A
B
C
D
E
1、如图5,正方形纸片ABCD的边BC上有一点E,AE=8cm,若把纸片对折,使点A及点E重合,则纸片折痕的长是多少?
2、如图6,在矩形ABCD中,E是BC上一点且AE=AD,又于点F,证明:EC=EF.
图6
A
B
C
D
E
F
3、如图7,已知P是矩形ABCD的内的一点.求证:.
A
B
C
D
P
图7
2009~2010学年度上期目标检测题
九年级 数学
半期检测题
(总分120分,100分钟完卷)
班级 姓名 学号 成绩
新课 标 第一网 xkb1
A
B
C
D
E
F
O
一、选择题(每小题3分,共36分)每小题只有一个正确答案,请将正确答案的番号填在括号内.
1、下列数据为长度的三条线段可以构成直角三角形的是( )
(A)3、5、6 (B) 2、3、4
(C) 6、7、9 (D)9、12、15
2、如图(一):AB=AC,D、E、F分别是三边中点,
则图中全等三角形共有( )
(A) 5对 (B) 6对 (C) 7对 (D) 8对
3、△ABC中,∠A=150º,AB=10,AC=18,则△ABC的面积是( ) (一)
(A)45 (B)90 (C)180 (D)不能确定
4、已知△ABC中,∠C=90º,∠A=30º,BD平分∠B交AC于点D,则点D( )
(A)是AC的中点 (B)在AB的垂直平分线上
(C)在AB的中点 (D)不能确定
5、关于的一元二次方程的一个根是0,则的值是( )
(A)1 (B) -1 (C) 1或-1 (D)
6、方程的根是( )
(A) (B) (C) (D)
7、用配方法将二次三项式变形,结果为( )
(A) (B) (C) (D)
8、两个连续奇数的乘积是483,则这两个奇数分别是( )
(A) 19与21 (B) 21与23 (C) 23与25 (D) 20与22
9、根据下列条件,能判定一个四边形是平行四边形的是( )
(A)两条对角线相等 (B)一组对边平行,另一组对边相等
(C)一组对角相等,一组邻角互补 (D)一组对角互补,一组对边相等
10、能判定一个四边形是矩形的条件是( )
(A)对角线相等 (B)对角线互相平分且相等
(C)一组对边平行且对角线相等 (D)一组对边相等且有一个角是直角
11、如果一个四边形要成为一个正方形,那么要增加的条件是( )
(A)对角线互相垂直且平分 (B)对角互补
(C)对角线互相垂直、平分且相等 (D)对角线相等
12、矩形的四个内角平分线围成的四边形( )
(A)一定是正方形 (B)是矩形 (C)菱形 (D)只能是平行四边形
二、填空题(每空2分,共38分)
1、直角三角形两直角边分别是5cm与12cm,则斜边长是 ,斜边上的高
是 cm.
2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.
A
B
D
C
3、有一个角是30º的直角三角形的三边的比是 .
A
B
C
D
E
4、如图( 二),△ABC中,AB=AC,∠BAC=120º,
AD⊥AC,DC=8,则BD= .
5、已知:如图(三),△ABC中,AB=AC,∠A=40º,
AB的中垂线交AC于点D,交AB于点E,
则∠C= ,∠DBC= . (二)
6、若关于的方程是一元二次方程,
则的取值范围是 . (三)
7、关于的方程,若常数项为0,则= .
8、如果是一个完全平方式,则= .
9、已知,则 .
10、方程的根是 .
11、已知,则的值是 .
12、如图(四),平行四边形ABCD中,AD=6cm ,AB=9cm,
AE平分∠DAB,则CE= cm. (四)
13、已知矩形ABCD的周长是24 cm,点M是CD中点,∠AMB=90°,则AB= cm,
AD= cm.
14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .
15、等腰梯形上底长及腰长相等,而一条对角线及一腰垂直,则梯形上底角的度数是 .
三、解方程(每小题4分,共16分)
1、(用配方法).
2、(用公式法).
3、(用因式分解法).
4、.
第 12 页
展开阅读全文