收藏 分销(赏)

注塑成型缺陷解决方案.doc

上传人:人****来 文档编号:9780686 上传时间:2025-04-07 格式:DOC 页数:16 大小:50KB
下载 相关 举报
注塑成型缺陷解决方案.doc_第1页
第1页 / 共16页
注塑成型缺陷解决方案.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述
注塑成型缺陷解决方案 注塑成型缺陷解决方案 注塑成型缺陷之一:料头附近有暗区(  ) 1、表观 在料头周围有可辨别的环形—如使用中心式浇口则为中心圆,如使用侧浇口则为同心圆,这是因为环形尺寸小,看上去像黯晕。这主要是加工高粘性(低流动性)材料时会发生这种现象,如、和等。 物理原因 如果注射速度太高,熔料流动速度过快且粘性高,料头附近表层部分材料容易被错位和渗入。这些错位就会在外层显现出黯晕。 在料头附近,流动速度特别高,然后逐步降低,随着注射速度变为常数,流动体前端扩展为一个逐渐加宽的圆形。同时在料头附近为获得低的流体前流速度,必须采用多级注射,例如:慢—较快—快。目的是在整个充模循环种获得均一的熔体前流速度。 通常以为黯晕是在保压阶段熔料错位而产生的。实际上,前流效应的作用是在保压阶段将熔料移入了制品内部。 与加工参数有关的原因与改良措施见下表: 1、流速太高 采用多级注射:慢-较快-快 2、熔料温度太低 增加料筒温度,增加螺杆背压 3、模壁温度太低 增加模壁温度 与设计有关的原因与改良措施见下表: 1、浇口与制品成锐角 在浇口和制品间成弧形 2、浇口直径太小 增加浇口直径 3、浇口位置错误 浇口重新定位 注塑成型缺陷之二:锐边料流区有黯区 锐边料流区有黯区( ) 1、表观 成型后制品表面非常好,直到锐边。锐边以后表面出现黯区并且粗糙。 物理原因 如果注射速度太快,即流速太高,尤其是对高粘性(流动性差)的熔体,表面层容易在斜面和锐边后面发生移位和渗入。这些移位的外层冷料就表现为黯区和粗糙的表面。 与加工参数有关的原因与改良措施见下表: 1、流体前端速度太快 采用多级注射:快-慢,在流体前端到达锐边之前降低注射速度 与设计有关的原因与改良措施见下表: 1、模具内锐角过渡 提供光滑过 注塑成型缺陷之三:表面光泽不均 表面光泽不均( ) 1、表观 虽然模具具有均一的表面材质,制品表面还是表现为灰黯和光泽不均匀。 物理原因 注射成型生产的制品表面多少是模具表面的翻版。表面粗糙取决于热塑性材料本身,它的粘性、速度设置以及成型参数如注射速度、保压和模温。因而,由于仿制的表面粗糙度的原因,制品表面会出现为灰黯、较黯或光滑。 理论上说,当被点蚀或侵蚀过的模具表面已精确仿制,投射到制品表面的光线会发生漫反射。因此,表面会出现黯区。对具有较少精确仿制的表面,漫反射现象就会得到控制进而制品表面出现好的光泽效果 与加工参数有关的原因与改良措施见下表: 1、保压太低 提高保压压力 2、保压时间太短 提高保压时间 3、模壁温度太低 提高模壁温度 4、熔料温度太低 提高熔体温度 与设计有关的原因与改良措施见下表: 1、模壁截面差异太大 提供更均一的模壁截面 2、材料积留过多或棱边尺寸过大 避免材料积留过重或棱边尺寸过大 3、料流线处排气不好 提高模具在料流线处的排气 注塑成型缺陷之四:空隙 空隙() 1、表观 制品内部的空隙表现为圆形或拉长的气泡形式。仅仅是透明的制品才可以从外面看出里面的空隙;不透明的制品无法从外面测出。空隙往往发生在壁相对较厚的制品内并且是在最厚的地方。 物理原因 当制品内有泡产生时,经常认为是气泡,是模具内的空气被流入模腔的熔料裹入。另一个解释是料筒内的水气和气泡会想方设法进入到制品的内部。所以说,这样的“泡”的产生有多方面的根源。 一开始,生产的制品会形成一层坚硬的外皮,并且视模具冷却的程度往里或快或慢的发展。然而在厚壁区域里,中心部分仍继续保持较长时间的粘性。外皮有足够强度抵抗任何应力收缩。结果,里面的熔料被往外拉长,在制品内仍为塑性的中心部分形成空隙 与加工参数有关的原因与改良措施见下表: 1、保压太低 提高保压压力 2、保压时间太短 提高保压时间 3、模壁温度太低 提高模壁温度 4、熔料温度太高 降低熔体温度 与设计有关的原因与改良措施见下表: 1、浇口横截面太小 增加浇口横截面,缩短浇道 2、喷嘴孔太小 增大喷嘴孔 3、浇口开在薄壁区 浇口开在厚壁区 注塑成型缺陷之五:气泡 气泡( ) 1、表观 制品表面和内部有许多气泡—主要在料头附近。流道中途和远离料头的地方—不仅是发生在制品壁厚的地方。气泡有着不同的尺寸和不同的形状。 物理原因 气泡主要发生在必须在高温下加工的热敏性材料。如果必须的成型温度太高,通过分子分裂而导致材料分解,熔料就有发生热降解的危险,成型过程中气泡就容易产生。 如果周期时间长,通常可能是太长的残留时间和行程利用不足的原因。也可能因为料筒内的熔料过热。 与加工参数有关的原因与改良措施见下表: 1、熔料温度太高 降低料筒温度、螺杆背压和螺杆转速 2、熔料在料筒内残留时间过长 使用较小的料筒直径 与设计有关的原因与改良措施见下表: 1、不合理的螺杆几何形状 使用低压缩螺杆 注塑成型缺陷之六:白点 白点( ) 1、表观 料头附近有未熔化的颗粒。对薄壁制品来说是不可能获得光滑的表面。 物理原因 由于薄壁制品生产成型周期短,因此必须以很高的螺杆转速进行塑化从而使熔料在螺杆料筒内残留时间缩短。在碰到薄壁制品生产时,通常包括、,模具工会试着降低熔料温度以缩短冷却时间,未完全熔化的颗粒会被注射进模具内。 与加工参数有关的原因与改良措施见下表: 1、熔料温度太低 增加料筒温度 2、螺杆转速太高 降低螺杆转速 3、螺杆背压太低 增加螺杆背压 4、循环时间短,即熔料在料筒内残留时间短 延长循环时间 与设计有关的原因与改良措施见下表: 1、不合理的螺杆几何形状 选用适当几何形状的螺杆(含计量切变区) 注塑成型缺陷之七:灰黑斑纹 灰黑斑纹( or ) 1、表观 灰黑斑纹可能发生在浇口附近,流道的中间和远离浇口的部分。只能在透明的零件中可看出,并且往往用,和料制成的产品有此现象。 物理原因 如果计量过程开始太早,螺杆喂料区里颗粒裹入的空气没有溢出喂料口,空气就会被挤入熔料内。然而,喂料区内的压力太低不能将空气移到后面。料筒内熔料中被挤入的空气就会使制品内产生灰黑斑纹。 就像压缩点火式柴油发动机里面所发生的情况一样,被料筒内挤入的空气所造成的焦化现象有时被称为“柴油机效应”。 焦化现象可解释熔料和挤入的气泡交接的地方由于压缩作用产生高温,同时空气内的氧气通过氧化作用使熔料产生断裂。 工艺调试应该在喂料区的中间开始熔化过程,此处熔料压力已较高,迫使颗粒之间的空气朝后移动并溢出料口。 与加工参数有关的原因与改良措施见下表: 1、螺杆背压太低 增加螺杆背压 2、喂料区的料筒温度过高 降低喂料区的料筒温度 3、螺杆转速过快 降低螺杆转速 4、循环时间短,即熔料在料筒内残留时间短 延长循环时间 与设计有关的原因与改良措施见下表: 1、不合理的螺杆几何形状 选用加料段长的螺杆,且加料段的螺槽较深 注塑成型缺陷之八:料头附近有灰黑斑 料头附近有灰黑斑( ) 1、表观 制品表面上以浇口或附近一点为中心向外发散出现银色或黑色纹迹。如果使用低粘性(高流动性)材料和高成型温度,纹路大多是黑色,如果采用高粘性(低流动性)材料,纹路大多是银白色。 物理原因 这是由被挤入和压缩的另一种气泡。如果螺杆降压幅度太高(螺杆回缩),降压速度过快,螺杆头前面的熔料释放太多,会在熔料内产生负压,在熔料温度太高的情况下,很容易在熔料内形成气泡。 这些气泡会在以后的注射阶段再次受到压缩,导致黑色纹路在制品内生成,最终成为“柴油机效应”。 如果浇口为中心式浇口,纹路就会从料头向外辐射。在带热流道注射的情况下,纹路只会再某段流道以后出现,因为在热流道里的材料不包含任何气泡,因而材料不会产生烧焦的痕迹。只有再料筒头的熔料才会产生烧焦的痕迹。 假如是低粘性的熔料,纹路比高粘性材料更灰黯和更大,因为前者再螺杆降压过程中容易产生真空和空隙。 3、与加工参数有关的原因与改良措施见下表: 1、螺杆降压太高 减小螺杆降压幅度 2、螺杆降压率太高 减小螺杆降压率 3、熔料温度太高 降低料筒温度,降低螺杆背压,降低螺杆转速 注塑成型缺陷之九:放射纹 放射纹() 1、表观 从浇口喷射出,有灰黯色的一股熔流在稍微接触模壁后马上被随后注入的熔料包住。此缺陷可能部分或完全隐藏在制品内部。 物理原因 放射纹往往发生在当熔料进入到模腔内,流体前端停止发展的方向。它经常发生在大模腔的模具内,熔流没有直接接触到模壁或没有遇到障碍。通过浇口后,有些热的熔料接触到相对较冷的模腔表面后冷却,在充模过程中不能同随后的熔料紧密结合在一起。 除去明显的表面缺陷,放射纹伴随不均匀性,熔料产生冻结拉伸,残余应力和冷应变而产生,这些因素都影响产品质量。 在多数情况下不太可能只通过调节成型参数改进,只有改进浇口位置和几何形状尺寸才可以避免。 与加工参数有关的原因与改良措施见下表: 1、注射速度太快 降低注射速度 2、注射速度单级 采用多级注射速度:慢-快 3、熔料温度太低 提高料筒温度(对热敏性材料只在计量区)。增加低螺杆背压 与设计有关的原因与改良措施见下表: 1、浇口和模壁之间过渡不好 提供圆弧过渡 2、浇口太小 增加浇口 3、浇口位于截面厚度的中心 浇口重定位,采用障碍注射 注塑成型缺陷之十:冷料头( ) 1、表观 这指的是有一块冷料卡在或粘在料头附近的表面上。冷料头会导致制品表面出现痕迹,严重的还会降低制品的力学性能 物理原因 当熔料可以在机器喷嘴或热流道附近冷却时往往会产生冷料头。由于先注射进的熔料总是聚集在浇口附近,在此区域就会产生缺陷。它的成因是因为机器喷嘴或热流道喷嘴周围的温度控制不合理。 3、与加工参数有关的原因与改良措施见下表: 1、热流道温度太低 增加热流道温度 2、喷嘴温度太低 测量喷嘴温度,提高喷嘴温度,减少喷嘴接触区 4、与设计有关的原因与改良措施见下表: 1、喷嘴横截面太小 增加喷嘴横截面 2、浇口几何尺寸不合理 改变浇口几何尺寸将冷料头留在通道 3、热流道几何尺寸不合理 改变热流道喷嘴几何尺寸 注塑成型缺陷之十一:唱片纹 唱片纹( ) 1、表观 在整个料流方向上甚至到流道末端可以看出很深的槽。在采用高粘性(流动性差)材料和厚壁的制品生产时出现这种现象,这些槽看上去象唱片上的纹路。在料做成的产品上非常清晰,但在制品上更大,并且呈灰黯色。 物理原因 如果在注射过程中—特别时在低注射速度的条件下,接触模具表面的熔体凝结速度太快,流动阻力太高,就会在流体前端产生扭曲。凝固的外层材料不会完全接触模腔壁而形成波浪状。这些波浪状的材料会冻结,保压也不再能够将它们弄平整。 与加工参数有关的原因与改良措施见下表: 1、注射速度太低 增加注射速度 2、熔料温度太低 提高料筒温度,增加螺杆背压 3、模具表面温度太低 增加模具温度 4、保压太低 增加保压 与设计有关的原因与改良措施见下表: 1、浇口横截面太小 增加浇口横截面,缩短浇道 2、喷嘴孔太小 增大喷嘴孔 注塑成型缺陷之十二熔接缝 熔接缝( ) 表观 在充模方式里,熔接缝是指各流体前端相遇时的一条线。特别是模具有高抛光表面的地方,制品上的熔接缝很象一条刮痕或一条槽,尤其是在颜色深或透明的制品上更明显。熔接缝的位置总是在料流方向上。 物理原因 熔接缝形成的地方为熔料的细流分叉并又连接在一起的地方,最典型的是型芯周围的熔流或使用多浇口的制品。在细流再次相遇的地方,表面会形成熔接缝和料流线。熔料周围的型芯越大或浇口间的流道越长,形成的熔接缝就越明显。细小的熔接缝不会影响制品的强度。 然而,流程很长或温度和压力不足的地方,充模不满会造成明显的凹槽。原因主要是流体前端未均匀熔合产生弱光点。聚合物内加入颜料的地方可能会产生斑点,这是因为在取向上有明显的差异。浇口的数量和位置决定了熔接缝的数量和位置。流体前锋相遇时的角度越小,熔接缝越明显。 大多数情况下,工艺调试不可能完全避免熔接缝或料流线。所能做到的是降低其亮度,或将它们移到不显眼或完全看不见的地方 与加工参数有关的原因与改良措施见下表: 1、注射速度太低 增加注射速度 2、熔料温度太低 提高料筒温度 3、模具表面温度太低 增加模具温度 4、保压太低 增加保压,尽早进行保压切换 与设计有关的原因与改良措施见下表: 1、浇口位置不合理 重新定位浇口并将其移到不可见的地方 2、料流道处无排气孔 排气孔尺寸应符合材料的特性 注塑成型缺陷之十三:水迹纹 水迹纹( ) 表观 水迹纹是在制品表面有很长的银丝,水迹纹的开口方向沿着料流方向。在制品未完全充满的地方,流体前端很粗糙。 物理原因 一些塑料如、、、和等容易吸水。如果塑料储藏条件不好,潮气就会进入颗粒或附在表面。当颗粒熔化时,潮气会转变成蒸汽形成气泡。在注射期间,这些气泡会暴露在流体前锋的表面,爆裂然后产生不规则的纹路 与加工参数有关的原因与改良措施见下表: 1、颗粒内残留的水分太高 检查颗粒的储藏条件,缩短颗粒在料斗内的时间,给材料 提供足够的预烘干 注塑成型缺陷之十四:颜色不均 颜色不均( ) 表观 颜色不均是制品表面的颜色不一样,可在料头附近和远处,偶尔也会在锐边的料流区出现。 物理原因 颜色不均是因为颜料分配不均而造成的,尤其是通过色母、色粉或液态色料加色时。 在温度低于推荐的加工温度情况下,母料或色料不能完全均匀化。当成型温度过高,或料筒的残留时间太长,也容易造成颜料或塑料的热降解,导致颜色不均。 当材料在正确的温度下进行塑化或均化时,如果通过料头横截面时注射太快,可能会产生摩擦热造成颜料的降解和颜色的改变。 通常在使用色母料时,应确保颜料及其溶解液需上色的树脂在化学、物理特性方面的相容性。 与加工参数有关的原因与改良措施见下表: 1、材料未均匀混合 降低螺杆速度;增加料筒温度,增加螺杆背压 2、熔料温度太低 增加料筒温度,增加螺杆背压 3、螺杆背压太低 增加螺杆背压 4、螺杆速度太高 减少螺杆速度 与设计有关的原因与改良措施见下表: 1、螺杆行程过长 用直径较大或长径比较大的料筒 2、熔料在料筒内停留时间短 用直径较大或长径比较大的料筒 3、螺杆L:D太低 使用长径比较大的料筒 4、螺杆压缩比低 采用高压缩比螺杆 5、没有剪切段和混合段 提供剪切段和(或)混合段 注塑成型缺陷之十五:烧焦纹 烧焦纹( ) 表观 制品表面表现出银色和淡棕色的非常暗的条纹。 物理原因 烧焦暗纹是因为熔料过度热降解而造成的。淡棕色的黯纹是因为熔料发生氧化或分解。银纹的造成一般是因为螺杆、止逆环、喷嘴、料头、制品内窄的横截面或锐边区域产生摩擦。 一般来说,在机器停工而料筒仍继续加热的时间内塑料会发生严重降解或分解现象。 如果仅在料头附近发现条纹,原因就不止是热流道温度控制优化不足,还同机器的喷嘴有关。 熔料的温度哪怕是稍微有点高,熔料在料筒内的残留时间相对较长,也会导致制品的力学性能下降。在 因为分子热运动而产生的降解连锁反应的作用下,熔料的流动性会增加,以至让模件不可避免地发生溢模的现象。对复杂模具尤其要小心。 与加工参数有关的原因与改良措施见下表: 1、熔料温度太高 降低料筒温度 2、热流道温度太高 检查热流道温度,降低热流道温度 3、熔料在料筒内残留时间太长 采用小直径料筒 4、注射速度太高 减小注射速度:采用多级注射:快-慢 注塑成型缺陷之十六:玻璃纤维银纹 玻璃纤维银纹( ) 表观 加入了玻璃纤维的塑料模制品的表面呈多样缺陷:灰暗、粗糙,部分出现金属亮点等很明显的特征,尤其是凸起部分料流区,流体再次会合的接合线附近。 物理原因 如果注射温度太低并且模温太低,含有玻纤的材料往往在模具表面凝结过快,此后玻纤再也不会嵌到熔体内。当两股料流前锋相遇时,玻纤的取向是在每条细流的方向上,因而会在交叉的地方导致表面材质不规则,结果就会形成接合缝或料流线。 这些现象在料筒内熔料内未完全混合时更加明显,例如螺杆行程太长,导致熔料混合不均的熔料也被注射。 与加工参数有关的原因与改良措施见下表: 1、注射速度太低 增加注射速度:考虑用多级注射:先慢-后快 2、模温太低 增加模温 3、熔料温度太低 增加料筒温度,增加螺杆背压 4、熔料温度变化高,如熔料不均匀 增加螺杆背压;减小螺杆速度;使用较长的料筒以缩短行程 注塑成型缺陷之十七:溢边 溢边() 表观 在凹处周围,沿分型线的地方或模具密封面出现薄薄的飞边。 物理原因 在多数情况下,溢边的产生是因为在注射和保压的过程中,机器的合模力不够,无法沿分型线将模具锁紧并密封。如果模腔内有地方压力很高,此处模具变形就有可能造成溢模。在高的成型温度和注射速度条件下,熔料在流道末端仍能充分流动,如果摸具没有锁紧就会产生溢边。 如果只在模具上某一点发现溢边,这就说明模具本身有缺陷:此处模具未完全封住。典型的溢边情形:局部产生溢边是由于模具有缺陷,而扩展到整个周围则是因为合模力不够。 必须注意!为避免溢边在增加合模力时应该慎重,因为合模力过量易损坏模具。建议正确的做法是应仔细确认溢边的真正原因。特别是在使用多型腔的模具之前,准备一些模具的分析资料不失为一个好办法,这样可以给所有的问题提供正确答案。 与加工参数有关的原因与改良措施见下表: 1、锁模力不够 增加锁模力 2、注射速度太快 减少注射速度:用多级注射:快-慢 3、保压切换晚 早一点保压切换 4、熔料温度太高 降低料筒温度 5、模壁温度太高 降低模壁温度 6、保压太高 降低保压 与设计有关的原因与改良措施见下表: 1、模具强度不够 增加模具强度 2、模具在分型线或凸边处密封不足 重新设计模具 注塑成型缺陷之十八:收缩 收缩( ) 表观 塑件表面材料堆积区域有凹痕。收缩水主要发生在塑件壁厚厚的地方或者是壁厚改变的地方。 物理原因 当制品冷却时,收缩(体积减小,收缩)发生,此时外层紧模壁的地方先冻结,在制品中心形成内应力。如果应力太高,就会导致外层的塑料发生塑性变形,换句话说,外层会朝里凹陷下去。如果在收缩发生和外壁变形还未稳定(因为还没有冷却)时,保压没有补充熔料到模件内,在模壁和已凝固的制品外层之间就会形成沉降。 这些沉降通常会被看成为收缩。如果制品有厚截面,在脱模后也有可能产生这样的缩水。这是因为内部仍有热量,它会穿过外层并对外层产生加热作用。制品内产生的拉伸应力会使热的外层向里沉降,在此过程中形成收缩。 与加工参数有关的原因与改良措施见下表: 1、保压太低 增加保压 2、保压时间太短 延长保压时间 3、模壁温度太高 降低模壁温度 4、熔料温度太高 降低熔料温度,降低料筒温度 与设计有关的原因与改良措施见下表: 1、料头横截面太小 增加料头横截面 2、料头太长 缩短料头 3、喷嘴孔太小 增加喷嘴孔径 4、料头开在薄壁处 将料头定位在厚壁处 5、材料堆积过量 避免材料堆积 6、壁/筋的截面不合理 提供较合理的壁/筋的截面比例 注塑成型缺陷之十九:注射不足 注射不足( ) 表观 : 模腔未完全充满,主要发生在远离料头或薄壁面的地方。 物理原因 熔料的注射压力和/或注射速度太低,熔料在射向流长最末端过程中冷却。通常在低熔料温度和模温的条件下注射高粘性材料时会碰到这种情况。它也会发生在需要高压注射但保压设置低不成比例的时候。 实际上,当需要高注射压力时,保压也应按比例提高:正常时,保压应为注射压力的50%左右,但如果采用高注射压力,保压应为7080%。 如在料头附近发现注射不满,可以解释为:流体前锋在这些点被阻挡,较厚的地方先被充满。如此,在模腔几乎被充满之后,在薄壁处的熔料已经凝结并且在流体中心部位有少量的流动导致注射不足。 与加工参数有关的原因与改良措施见下表: 1、注射压力太低 增加注射压力 2、注射速度太低 增加注射速度 3、保压太低 增加保压 4、保压切换太早 延迟从注射到保压的切换 5、熔料温度太低 增加料筒温度,增加螺杆背压 6、保压时间太短 延长保压时间 与设计有关的原因与改良措施见下表: 1、流道/料头横截面太小 增加流道/料头的横截面 2、模具排气不足 提高模具排气性 3、喷嘴孔太小 增加喷嘴孔径 4、薄壁处的厚度不够 增加截面厚度 注塑成型缺陷之二十:翘曲 翘曲() 表观 制品的形状在制品脱模后或稍后一段时间内产生旋转或扭曲现象。典型表现为,制品平坦部分有起伏,直边朝里或朝外弯曲或扭曲。 物理原因 制品-因其特性-冻结的分子链在应力作用下发生内部移位。在脱模的时候,按不同的制品形状,应力往往会造成不同程度的变形。内应力使制品收缩不均,小颗粒移位,颗粒内冷却不平衡或颗粒内产生过量的压力。特别是用部分结晶材料制成的制品,如、、比非晶体材料如、、和更容易产生缩壁,更易于翘曲。 与加工参数有关的原因与改良措施见下表: 1、模内压力太高 降低保压,将保压切换提前 2、模温太低 增加模具温度 3、流体前锋,粘性太低 增加注射速度 4、熔料温度太低 增加料筒温度,增加螺杆背压 与设计有关的原因与改良措施见下表: 1、模温不稳定 提供冷却/加热均衡的模具 2、截面厚度不规则 按树脂特性重新设计制品形状尺寸 注塑成型缺陷之二十一:顶白 顶白( ) 表观 在制品面对喷嘴一侧,即在顶出杆位于模具顶出一侧的地方发现应力泛白和应力升高的现象 物理原因 如果必须的脱模力太高或顶出杆的表面相对较小,此处的表面压力会很高,发生变形最终造成顶出部位泛白。 与加工参数有关的原因与改良措施见下表: 1、保压太高 降低保压 2、保压时间太长 缩短保压时间 3、保压时间切换太迟 将保压切换提前 4、冷却时间太短 延长冷却时间 与设计有关的原因与改良措施见下表: 1、脱模斜度不够 按规格选择脱模斜度 2、脱模方向上表面粗糙 对脱模方向上模具进行抛光 3、顶出一侧上形成真空 型芯内装气阀 成型工艺 ※ 热塑性塑料成型   热塑性塑料品种每繁多,即使同一品种也由于树脂分子及附加物配比不同而使其使 用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交联等各种化学 方法在原有的树脂结构中导入一定百分比量的其它单体或高分子等,以改变原 有树脂的结构成为具有新的改进物性和加工性的改性产品。例如,即为在聚苯乙烯分子 中导入了丙烯腈、丁二烯等第二和第三单体后成为改性共聚物,可看作称改性聚苯乙烯,具有比 聚苯乙烯优异综合性能,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料 也有仅供注塑用和挤出用之分,故本章节主要介绍各种注塑用的热塑性塑料。 1、收缩率   热塑性塑料成型收缩的形式及计算如前所述,影响热塑性塑料成型收缩的因素如下:  1.1塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强, 冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大, 收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热 固性塑料大。  1.2塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由 于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却 慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密 度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。  1.3进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作 用及成型时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进 料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。  1.4成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶 度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影 响到各部分收缩量大小及方向性。另外,保持压力及时间对收缩也影响较大,压力大、时 间长的则收缩小但方向性大。注塑压力高,熔融料粘度差小,层间剪切应力小,脱模后弹性 回跳大,故收缩也可适量的减小,料温高、收缩大,但方向性小。因此在成型时调整模温、 压力、注塑速度及冷却时间等诸因素也可适当改变塑件收缩情况。   模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布 情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收 缩率时,一般宜用如下方法设计模具:    ①对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修正的余地。    ②试模确定浇注系统形式、尺寸及成型条件。    ③要后处理的塑件经后处理确定尺寸变化情况(测量时必须在脱模后24小时以后)。    ④按实际收缩情况修正模具。    ⑤再试模并可适当地改变工艺条件略微修正收缩值以满足塑件要求。 2、流动性  2.1热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线流动长 度、表现粘度及流动比(流程长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量 分布宽,分子结构规整性差,熔融指数高、螺流动长度长、表现粘度小,流动比大的则流 动性就好,对同一品名的塑料必须检查其说明书判断其流动性是否适用于注塑成型。按模 具设计要求大致可将常用塑料的流动性分为三类:    ①流动性好 尼龙、聚乙烯、聚苯乙烯、聚丙烯、醋酸纤维素、聚(4)甲基戍烯;    ②流动性中等 聚苯乙烯系列树脂(如、)、有机玻璃、聚甲醛、聚苯醚;    ③流动性差 聚碳酸酯、硬聚氯乙烯、聚苯醚、聚砜、聚芳砜、氟塑料。  2.2各种塑料的流动性也因各成型因素而变,主要影响的因素有如下几点:    ①温度料温高则流动性增大,但不同塑料也各有差异,聚苯乙烯(尤其耐冲击 型及值较高的)、聚丙烯、尼龙、有机玻璃、改性聚苯乙烯(如、)、聚碳酸酯、醋 酸纤维素等塑料的流动性随温度变化较大。对聚乙烯、聚甲醛、则温度增减对其流动性影响 较小。所以前者在成型时宜调节温度来控制流动性。    ②压力注塑压力增大则熔融料受剪切作用大,流动性也增大,特别是聚乙烯、聚 甲醛较为敏感,所以成型时宜调节注塑压力来控制流动性。    ③模具结构浇注系统的形式,尺寸,布置,冷却系统设计,熔融料流动阻力(如 型面光洁度,料道截面厚度,型腔形状,排气系统)等因素都直接影响到熔融料在型腔内的 实际流动性,凡促使熔融料降低温度,增加流动性阻力的则流动性就降低。  模具设计时应根据所用塑料的流动性,选用合理的结构。成型时则也可控制料温,模温及注塑压力、注塑速度等因素来适当地调节填充情况以满足成型需要。 3、结晶性   热塑性塑料按其冷凝时无出现结晶现象可划分为结晶型塑料与非结晶型(又称无 定形)塑料两大类。   所谓结晶现象即为塑料由熔融状态到冷凝时,分子由独立移动,完全处于无次序 状态,变成分子停止自由运动,按略微固定的位置,并有一个使分子排列成为正规模型的 倾向的一种现象。   作为判别这两类塑料的外观标准可视塑料的厚壁塑件的透明性而定,一般结晶性 料为不透明或半透明(如聚甲醛等),无定形料为透明(如有机玻璃等)。但也有例外情 况,如聚(4)甲基戍烯为结晶型塑料却有高透明性,为无定形料但却并不透明。   在模具设计及选择注塑机时应注意对结晶型塑料有下列要求及注意事项:    ①料温上升到成型温度所需的热量多,要用塑化能力大的设备。    ②冷却回化时放出热量大,要充分冷却。    ③熔融态与固态的比重差大,成型收缩大,易发生缩孔、气孔。    ④冷却快,结晶度低,收缩小,透明度高。结晶度与塑件壁厚有关,壁厚则冷却慢, 结晶度高,收缩大,物性好。所以结晶性料应按要求必须控制模温。    ⑤各向异性显著,内应力大。脱模后未结晶化的分子有继续结晶化倾向,处于 能量不平衡状态,易发生变形、翘曲。    ⑥结晶化温度范围窄,易发生未熔粉末注入模具或堵塞进料口。 4、热敏性塑料及易水解塑料  4.1热敏性系指某些塑料对热较为敏感,在高温下受热时间较长或进料口截面 过小,剪切作用大时,料温增高易发生变色、降解,分解的倾向,具有这种特性的塑料称 为热敏性塑料。如硬聚氯乙烯、聚偏氯乙烯、醋酸乙烯共聚物,聚甲醛,聚三氟氯乙烯等。 热敏性塑料在分解时产生单体、气体、固体等副产物,特别是有的分解气体对人体、设备、 模具都有刺激、腐蚀作用或毒性。因此,模具设计、选择注塑机及成型时都应注意,应选 用螺杆式注塑机,浇注系统截面宜大,模具和料筒应镀铬,不得有死角滞料,必须严格控 制成型温度、塑料中加入稳定剂,减弱其热敏性能。  4.2有的塑料(如聚碳酸酯)即使含有少量水分,但在高温、高压下也会发生分解, 这种性能称为易水解性,对此必须预先加热干燥。 5、应力开裂及熔体破裂  5.1有的塑料对应力敏感,成型时易产生内应力并质脆易裂,塑件在外力作用下或 在溶剂作用下即发生开裂现象。为此,除了在原料内加入添加剂提高开抗裂性外,对原料应 注意干燥,合理的选择成型条件,以减少内应力和增加抗裂性。并应选择合理的塑件形状, 不宜设置嵌件等措施来尽量减少应力集中。模具设计时应增大脱模斜度,选用合理的进料口及顶 出机构,成型时应适当的调节料温、模温、注塑压力及冷却时间,尽量避免塑件过于冷脆 时脱模,成型后塑件还宜进行后处理提高抗开裂性,消除内应力并禁止与溶剂接触。  5.2当一定融熔体流动速率的聚合物熔体,在恒温下通过喷嘴孔时其流速超过某值后,熔 体表面发生明显横向裂纹称为熔体破裂,有损塑件外观及物性。故在选用熔体流动速率高的聚 合物等,应增大喷嘴、浇道、进料口截面,减少注塑速度,提高料温。 6、热性能及冷却速度  6.1各种塑料有不同比热、热传导率、热变形温度等热性能。比热高的塑化时需要 热量大,应选用塑化能力大的注塑机。热变形温度高塑料的冷却时间可短,脱模早,但脱模后 要防止冷却变形。热传导率低的塑料冷却速度慢(如离子聚合物等冷却速度极慢),故必须充分冷 却,要加强模具冷却效果。热浇道模具适用于比热低,热传导率高的塑料。比热大、热传 导率低,热变形温度低、冷却速度慢的塑料则不利于高速成型,必须选用适当的注塑机及加 强模具冷却。  6.2各种塑料按其种类特性及塑件形状,要求必须保持适当的冷却速度。所以模具 必须按成型要求设置加热和冷却系统,以保持一定模温。当料温使模温升高时应予冷却, 以防止塑件脱模后变形,缩短成型周期,降低结晶度。当塑料余热不足以使模具保持一定 温度时,则模具应设有加热系统,使模具保持在一定温度,以控制冷却速度,保证流动性, 改善填充条件或用以控制塑件使其缓慢冷却,防止厚壁塑件内外冷却不匀及提高结晶度等。 对流动性好,成型面积大、料温不匀的则按塑件成型情况有时需加热或冷却交替使用或局 部加热与冷却并用。为此模具应设有相应的冷却或加热系统。各种塑料成型时要求的模温 及热性能见表1-4及表1-5。 7、吸湿性   塑料中因有各种添加剂,使其对水分有不同的亲疏程度,所以塑料大致可分为 吸湿、粘附水分及不吸水也不易粘附水分的两种,料中含水量必须控制在允许范围内,不 然在高温、高压下水分变成气体或发生水解作用,使树脂起泡、流动性下降、外观及力学 性能不良。所以吸湿性塑料必须按要求采用适当的加热方法及规范进行预热,在使用时还 需用红外线辐照以防止再吸湿。 ※ 增强塑料   为了进一步改善热固性及热塑性塑料的力学性能。常在塑料中加入玻璃纤维(简 称玻纤),滑石粉、云母、碳酸钙、高岭土、碳纤维等作为增强材料,以树脂为母体及粘结剂而组成新型复合材料,称为增强塑料(如环氧树脂为母体树脂 塑料的增强塑料又称为玻璃钢)。   由于塑料混用玻璃纤维的品种、长度、含量等不同,其工艺性及物性也各 不相同。下面主要介绍模塑用的热固性增强塑料及注射用的热塑性增强塑料。 1、热固性增强塑料   热固性增强塑料是由树脂、增强材料、助剂等组成。其中树脂作为母体和粘结剂,它 要求有良好的流动性、适宜的固化速度、副产物少,易调节粘度和良好的相溶性,并需满 足塑件及成型要求。增强材料起骨架作用,其品种规格繁多,但常用玻璃纤维,一般用量为 60%、长度为15~20毫米。助剂包括调节粘度的稀释剂(用以改进玻纤与树脂的粘结)、 用以调节树脂-纤维界面状态的玻纤表面处理剂、用以改进流动性,降低收缩,提高光泽 度及耐磨性等用的填料和着色剂等。由于选用的树脂,玻纤的品种规格(长度、直径, 无碱或含碱,支数,股数,加捻或无捻),表面处理剂,玻纤与树脂混制工艺(预混法或 预浸法,塑料配比等不同则其性能也各不相同。   1.1加工特性    ⑴流动性 增强料的流动性比一般压塑料差,流动性过大时易产生树脂流失与玻 纤分头聚积。过小则成型压力及温度将显著提高。影响流动性的因素很多,要评定某种料 的流动性,必须按组成作具体分析。影响流动性的因素    ⑵收缩率增强塑料的收缩率比一般压塑料小,它主要由 热收缩及化学结构收缩 组成。影响收缩的因素首先是塑料类种。一般酚醛比环氧、环氧酚醛、不饱和聚酯等 要大,其中不饱和聚酯料收缩最小。其它影响收缩的因素是塑件形状及壁厚,厚壁则收缩 大,塑料中含填料及玻纤量大则收缩小,挥发物含量大则收缩也大,成型压力大,装料 量大则收缩小,热脱模比冷脱模的收缩大,固化不足收缩大,当加压时机及成型温度适当, 固化充分而均匀时则收缩小。同一塑件其不同部位的收缩也各不相同,尤其对薄壁塑件更 为突出。一般收缩率为0~0.3%,以0.1%~0.2%的居多,收缩大小还与模具结构有关,总 之确定收缩率时应综合考虑各种因素。    ⑶压缩比 增强料的比容,压缩比都较一般压塑料大,预混料则更大,因此在模 具设计时需取较大的装料室,另外向模内装料也较困难,尤其预混料更为不便,但如采用 料坯预成型工艺则压缩比就可显著减小。     装料量一般可预先估算,经试压后再作调整。估算装料量的方法可由如下四种:      ①计算法装料量可按公式(1-1)计算:        A = V × G[1+(3%~5%)]      (1-1)       式中装料量(克);         塑件体积(厘米3);         所用塑料比重(克/厘米3);         3%~5物料挥发物、毛刺等损耗量补偿值。      ②形状简化计算法,将复杂形状塑件简化成由若干个简单形状组成,同时将 尺寸也相应变更,再按简化形状进行计算。      ③比重比较法,当按金属或其它材料的零件仿制塑件时,则可将原零件的材 料比重与所选用的增强塑料比重之比及原零件重量求得装料量。      ④注型比较法用树脂或石蜡等浇注型材料注入模具型腔成型后再以此零件 按比重比较法求得装料量。    ⑷物料状态增强料按其玻纤与树脂混合制成原料的方式可分为如下三种状态。      ①预混料是将长达15~30毫米的玻纤与树脂混合烘干而成,它比容大,流 动性比预浸料好,成型时纤维易受损伤,质量均匀性差,装料困难,劳动条件差。适用于 压制中小型、复杂形状塑料及大量生产时,不宜用于压制要求高强度的塑件。使用预混料 时要防止料"结"使流动性迅速下降。该料互溶性不良,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服