收藏 分销(赏)

人教版小学数学知识点.doc

上传人:精**** 文档编号:9774344 上传时间:2025-04-07 格式:DOC 页数:94 大小:178KB
下载 相关 举报
人教版小学数学知识点.doc_第1页
第1页 / 共94页
人教版小学数学知识点.doc_第2页
第2页 / 共94页
点击查看更多>>
资源描述
人教版小学数学知识点 人教版小学数学知识点 小学数学的基础知识、基本概念 自然数 用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。 整数 自然数都是整数,整数不都是自然数。 小数 小数是特殊形式的分数。但是不能说小数就是分数。 混小数(带小数) 小数的整数部分不为零的小数叫混小数,也叫带小数。 纯小数 小数的整数部分为零的小数,叫做纯小数。 循环小数 小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。 纯循环小数 循环节从十分位就开始的循环小数,叫做纯循环小数。 混循环小数 与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。 有限小数 小数的小数部分位数是有限个数字的小数(不全为零)叫做有限小数。 无限小数 小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。 分数 表示把一个“单位1”平均分成若干份,表示其中的一份或几份的数,叫做分数。 真分数 分子比分母小的分数叫真分数。 假分数 分子比分母大,或者分子等于分母的分数叫做假分数。 带分数 一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。 数与数字的区别 数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。 数是由数字和数位组成。 0的意义 0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。 0是一个数。0是一个偶数。0是任何自然数(0除外)的倍数。 0有占位的作用。0不能作除数。0是中性数。 十进制 十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。 加法 把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。 减法 已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。 乘法 求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。 除法 已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。 加、减法的运算定律 加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。 加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。 在减法中,被减数、减数同时加上或者减去一个数,差不变。 在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。 在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。 乘、除法运算定律 乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。 乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。 乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。 乘法的其他运算定律 一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。 除法的运算定律商不变性质 两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。 乘法的意义 一道乘法算式一般有下面几个意义: 一、求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少? 二、求一个数的若干倍是多少?例如:27×0.3的意义:求27的十分之三是多少? 除法的意义 一道除法算式,一般有下面几个意义: 1、一个数里有几个除数。简称“包含除法”。例如,24÷3表示24里面包含有几个3。 2、一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍? 3、把一个数平均分成若干份,每份是多少?简称“等分除法”。 例如:24÷3,表示把24平均分成3份,每份是多少? 4、已知一个数的几分之几是多少,求这个数。 例如:24÷3,表示:已知一个数的三分之一是24,求这个数。 小学数学的基础知识、基本概念 整除与除尽 整除: 甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。 除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。 整除可以说是除尽,但除尽就不能说一定叫整除。 例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。 又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。 约数和倍数 当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。 奇数与偶数 凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。 质数(素数)与合数 一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。 1是否质数 由于1的约数只有1个,所以1既不是质数,也不是合数。 公约数 几个数公有的约数,叫做公约数。 它的个数是有限的,既有最大的,也有最小的。 互质数 两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。 质数与互质数 这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。 质因数 把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。 分解质因数 把一个合数分解成几个质数相同的形式,就叫做分解质因数。 公倍数 几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。 最大公约数 几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。 最小公倍数 几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。 能被2整除的判断方法 一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。 能被5整除的判断方法 一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。 能被3整除的判断方法 一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。 分数单位 分子为1,分母不为零的真分数,就叫这个分数的分数单位。 分数化有限小数的判断方法 一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。 分数没有基本单位 不同的分数,有不同的分数单位。没有一个共同的标准量,就没有基本单位。 分数的基本性质 一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。 分数的通分、约分 通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。 约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。 百分数 表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特征是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。 百分率 两个相同量的比的比值,用百分数和的形式表示时,这个比值叫做这两个量的百分率,也叫百分比。通常的“××率”就是百分数。如“出勤率”等。 准确数与近似数(近似值) 与实际情况完全符合的数,叫做准确数。 与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。 名数与不名数 量数与计量单位名称合起来叫做名数。例如:7米、18千克、9时25分等都叫名数。 没有带单位名称的数,叫做不名数。如2、4、6、8等,都叫不名数。 单名数与复名数 只含有一个计量单位名称的名数叫做单名数。例如7米、18千克等都叫做单名数。 含有两个或者两个以上的同类计量单位名称的名数,叫做复名数。例如:2米3分米5厘米,8小时33分,8吨8千克等都叫复名数。 高级单位与低级单位 计量单位较大的叫做高级单位,计量单位较小的叫做低级单位。高、低级单位是相对的,没有单个的高、低级单位的名数。 公历年的平年、闰年 平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,计365天。其中二月份有28天。 闰年:把公历年份除以4(这里不是整百的公历年份)余数为零时,就把这一年叫做闰年,计366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数。 时刻与时间 时刻表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。时间表示两个是期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。 比和比值 比:两个数相除,叫做两个数的比。一般地当数a除以b(b≠0)就叫做a与b的比,记作。也可以用分数形式表示为。 比值:比的前项除以后项所得的商,叫做比值。 比和比值有本质的不同。如:1/2既可看作是比,又可看作是比值。如果化成小数,则只能表示为比值。 比的化简 把一个比化为最好简整数比,叫做比的化简。一般情况下,化简以后的比,前后两项为互质数。 比例 表示两个比相等的式子叫做比例。 正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 直线:没有端点,可以向两端无限延长。 射线:只有一个端点。可以向一端无限延长。 线段:有两个端点。射线和线段都是直线的一部分。 两点之间,线段最短。 垂线、垂足 两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。 角: 锐角(小于900的角)、直角(等于900的角)、钝角(大于900而小于1800的角)、平角(等于1800的角)、周角(等于3600的角) 平行线 在同一平面内的两条不相交的直线,叫做平行线。 面积和地积 面积是用来表示一个物体的表面或者平面的大小。 地积就是土地的面积。 体积和容积(容量) 体积:用来表示物体所占空间的大小,叫做体积。 容积:一个容器所能容纳物体的体积,叫做容积或容量。 小学毕业班总复习概念整理 一、整数和小数 1.最小的一位数是1,最小的自然数是0 2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。 3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位…… 4.小数的分类:         有限小数 小数            无限循环小数 无限小数 无限不循环小数 5.整数和小数都是按照十进制计数法写出的数。 6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。 7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……    小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍…… 二、数的整除 1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。 2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。 3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。    一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。 4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。 5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。 质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。 质数都有2个约数。 合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。 合数至少有3个约数。 最小的质数是2,最小的合数是4 1~20以内的质数有:2、3、5、7、11、13、17、19 1~20以内的合数有:4、6、8、9、10、12、14、15、16、18 6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。    能被5整除的数的特征:个位上是0或者5的数,都能被5整除。    能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。 7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。 8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。    几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。 10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。 11.互质数:公约数只有1的两个数叫做互质数。 12.两数之积等于最小公倍数和最大公约数的积。 三、四则运算 1.一个加数=和-另一个加数    被减数=差+减数     减数=被减数-差    一个因数=积÷另一个因数   被除数=商×除数    除数=被除数÷商 2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。 3.运算定律: (1)加法交换律: 两个数相加,交换加数的位置,它们的和不变。用字母表示是: 乘法交换律: 两个数相乘,交换因数的位置,它们的积不变。用字表示是:a××a (2)加法结合律: 三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。用字表示是:()() 乘法结合律: 三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。用字表示是:(a×b)××(b×c) (3)乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。用字表示是:()×××c (4)减法的性质:从一个数里连续减去两个数,等于从这个数里减去两个减数的和。用字母表示是::() 除法的性质:一个数连续除以两个数,等于这个数除以两个除数的积。 用字表示是:a÷b÷÷(b×c) 四、关系式 1.速度×时间=路程   路程÷时间=速度   路程÷速度=时间 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 单价×数量=总价 总价÷数量=单价 总价÷单价=数量 每份数×份数=总数 总数÷份数=每份数 总数÷每份数=份数 五、方程 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 3、解方程:求方程解的过程叫做解方程。 六、分数和百分数 1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。 2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。 3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。 分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。 分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。 4.分数的分类:分数可以分为真分数和假分数。 5.真分数:分子小于分母的分数叫做真分数。真分数小于1。 假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。 6.最简分数:分子与分母互质的分数叫做最简分数。 7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。 8.这样的分数可以化成有限小数:前提是这个分数要是最简分数, 如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。 9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。 七、量的计量 1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率   面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。   体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。    质量单位有:吨、千克、克,写出它们之间的进率。    时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。 2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。            小月有:4、6、9、11月,共4个,每月30天。          二月平年是28天,闰年是29天。 左拳记月法 3.一年有4个季度,每个季度3个月。 4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。 5.名数:把计量得到的数和单位名称合起来叫做名数。 单名数:只带有一个单位名称的叫做单名数。 复名数:带有两个或两个以上单位名称的叫做复名数。 6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。 八、几何初步知识 1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。 2.角:从一点引出两条射线所组成的图形叫做角。 3.角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。 4.计量角的大小的单位:度,用符号“°”表示。 5.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180°。 6.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明) 7.平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。 (画图说明)平行线之间垂直线段的长度都相等。 8.三角形:有三条线段围成的图形叫做三角形。 9.三角形的分类: (1)按角分:锐角三角形、钝角三角形、直角三角形。 (2)按边分:一般三角形、等腰三角形、等边三角形。 10.三角形三个内角和是180°。 11.四边形:由四条线段围成的图形。 12.圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径。 13.圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。 14.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 15.学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形 16.周长:围成一个图形的所有边长的总和就是这个图形的周长。    面积:物体的表面或围成的平面图形的大小,叫做它们的面积。 17。表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。    体积:物体所占空间的大小叫做物体的体积。 18.长方体、正方体都有12条棱,6个面,8个顶点。 正方体是特殊的长方体,等边三角形是特殊的等腰三角形。 19.圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆 20.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。 21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。 22.圆周率π是一个无限不循环小数。π=3.141592653…… 23.把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。 24.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。 25.等底等高的圆锥的体积是圆柱的 ,等底等高的圆柱的体积是圆锥的三倍。 体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的 ,圆锥的高是圆柱的3倍。 九、比和比例 1. 比的意义:两个数相除又叫做两个数的比。比例的意义:表示两个比相等的式子叫做比例。 2.求比值:比的前项除以比的后项所得的商叫做比值。 3、比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。 比例的基本性质:在比例里,两个外项的积等于两个内项的积。 4.应用比的基本性质可以化简比; 应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。 5.用字母表示比与除法和分数的关系。 ÷ (b≠0) 6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。 7.图上距离:实际距离=比例尺 或 =比例尺 实际距离=图上距离÷比例尺       图上距离=实际距离×比例尺 8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。    化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。 9.正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。用式子表示: (一定),用图表示正比例关系是一条直线。 10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。用式子表示:x×(一定),用图表示反比例关系是一条曲线。 十、简单的统计 1.常见的统计图有条形统计图、折线统计图和扇形统计图。 2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。作用:从图中能清楚地看出各数量的多少,便于相互比较。 3、折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。 4、扇形统计图特点:表示部分数与总数之间的关系。 十一、公式的整理 平面图形: 1.长方形:    周长=(长+宽)×2                     C长=()×2    面积=长×宽                        S长 ×b 2.正方形:周长=边长×4   C正×4 面积=边长×边长   S正×a 3.平行四边形的面积=底×高               S平 4.三角形的面积=底×高÷2               S三÷2 5.梯形的面积=(上底+下底)×高÷2       S梯=()×h÷2 6.圆的周长=直径×3.14                 C圆=πd    圆的周长=半径×2×3.14              C圆=2πr    圆的面积=半径的平方×圆周率            S圆=πr2 立体图形: 1.长方体: 表面积=(长×宽+长×高+宽×高)×2      S长=()×2 体积=长×宽×高                V长 2.正方体: 表面积=棱长×棱长×6           S正表×a×6 体积=棱长×棱长×棱长          V正3 3.圆柱: 侧面积=底面周长×高       表面积=侧面积+两个底面积    体积=底面积×高 4.以上立体图形的表面积、体积可以统一成公式为: 表面积=侧面积+两个底面积            体积=底面积×高 5.圆锥的体积=圆柱的体积÷3            V锥÷3 小学数学总复习概念整理 第一章 数和数的运算 一   概念 (一)整数 1 整数的意义 自然数和0都是整数。 2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 (二)小数 1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 …… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏ 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 …… 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 …… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 …… 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作   0.5302302 …… 简写作   。 (三)分数 1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 二   方法 (一)数的读法和写法   1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。   2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 (二)数的改写 一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。 2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…… 3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服