收藏 分销(赏)

2018年北师大九年级基础证明题.doc

上传人:人****来 文档编号:9765324 上传时间:2025-04-07 格式:DOC 页数:45 大小:750KB 下载积分:12 金币
下载 相关 举报
2018年北师大九年级基础证明题.doc_第1页
第1页 / 共45页
2018年北师大九年级基础证明题.doc_第2页
第2页 / 共45页


点击查看更多>>
资源描述
基础证明题 1.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE. 2.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D. 3.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC. (1)求证:△ABC≌△DFE; (2)连接AF、BD,求证:四边形ABDF是平行四边形. 4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数. 5.已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点, 求证:BE=CD. 6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O. (1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数. 7.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF. 8.如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF. 9.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF. (1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形. 10.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG. 11.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF. 12.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF. 求证:∠ABF=∠CBE. 13.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF. 求证:(1)△ADE≌△CDF; (2)∠BEF=∠BFE. 14.如图,四边形ABCD是正方形,E、F分别是AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE. 15.如图,四边形ABCD是正方形,点E,F分别在AD,DC上,且AE=DF. 求证:BE=AF. 16.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF. 17.如图,四边形ABCD是正方形,△EBC是等边三角形. (1)求证:△ABE≌△DCE;(2)求∠AED的度数. 18.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F. 求证:BE=CF. 19.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE. (1)求证:BE=CE.(2)求∠BEC的度数. 20.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF. 21.如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为3,CD=4,求BD的长. 22.如图,AB是⊙O的直径,∠ACD=20°,求∠BAD的度数. 23.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F. (1)求证:DE⊥AC;(2)若AB=10,AE=8,求BF的长. 24.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长. 25.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线且EF⊥AB于点F,延长EF交CB的延长线于点G, (1)求证: ∠ABG=2∠C. (2)若sin∠EGC=,⊙O的半径是3,求AF的长. 26.如图,AB是⊙O的直径,点C在AB的延长线上且直线CE是⊙O的切线, AE⊥CD,垂足为点E. (1)求证:,AD平分∠CAE (2)若BC=3,CD=3,求弦AD的长. 27.如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长. 28.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB. (1)求证:CE=CB;(2)若AC=2,CE=,求AE的长. 29.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D. (1)求证:△ADC∽△CDB; (2)若AC=2,AB=CD,求⊙O半径. 30.如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P. (1)求证:AP=AB; (2)若OB=4,AB=3,求线段BP的长. 31.如图,已知AB是⊙O的直径,点P为圆上一点,点C为AB延长线上一点,PA=PC,∠C=30°. (1)求证:CP是⊙O的切线. (2)若⊙O的直径为8,求阴影部分的面积. 32.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM. (1)当AN平分∠MAB时,求DM的长; (2)连接BN,当DM=1时,求△ABN的面积; (3)当射线BN交线段CD于点F时,求DF的最大值. 33.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F. (1)证明:PC=PE;(2)求∠CPE的度数; (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.   2018年04月04日十二中数学2的初中数学组卷 参考答案与试题解析   一.解答题(共37小题) 1.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE. 【解答】解:∵AE=BF, ∴AE+EF=BF+EF, ∴AF=BE, 在△ADF与△BCE中, ∴△ADF≌△BCE(SAS)   2.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D. 【解答】证明:∵∠ACD=∠BCE, ∴∠ACB=∠DCE, 在△ABC和△DEC中,, ∴△ABC≌△DEC(SAS), ∴∠A=∠D.   3.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC. (1)求证:△ABC≌△DFE; (2)连接AF、BD,求证:四边形ABDF是平行四边形. 【解答】证明:(1)∵BE=FC, ∴BC=EF, 在△ABC和△DFE中,, ∴△ABC≌△DFE(SSS); (2)解:如图所示: 由(1)知△ABC≌△DFE, ∴∠ABC=∠DFE, ∴AB∥DF, ∵AB=DF, ∴四边形ABDF是平行四边形.   4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD; (2)若AC=AE,求∠DEC的度数. 【解答】解:∵∠BCE=∠ACD=90°, ∴∠3+∠4=∠4+∠5, ∴∠3=∠5, 在△ABC和△DEC中,, ∴△ABC≌△DEC(AAS), ∴AC=CD; (2)∵∠ACD=90°,AC=CD, ∴∠2=∠D=45°, ∵AE=AC, ∴∠4=∠6=67.5°, ∴∠DEC=180°﹣∠6=112.5°.   5.已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD. 【解答】证明:∵∠ABC=∠ACB, ∴AB=AC, ∵点D、E分别是AB、AC的中点. ∴AD=AE, 在△ABE与△ACD中, , ∴△ABE≌△ACD, ∴BE=CD.   6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O. (1)求证:△AEC≌△BED; (2)若∠1=42°,求∠BDE的度数. 【解答】解:(1)证明:∵AE和BD相交于点O, ∴∠AOD=∠BOE. 在△AOD和△BOE中, ∠A=∠B,∴∠BEO=∠2. 又∵∠1=∠2, ∴∠1=∠BEO, ∴∠AEC=∠BED. 在△AEC和△BED中, , ∴△AEC≌△BED(ASA). (2)∵△AEC≌△BED, ∴EC=ED,∠C=∠BDE. 在△EDC中, ∵EC=ED,∠1=42°, ∴∠C=∠EDC=69°, ∴∠BDE=∠C=69°.   7.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O. 求证:OE=OF. 【解答】证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵BE=DF, ∴AB+BE=CD+DF,即AE=CF, ∵AB∥CD, ∴AE∥CF, ∴∠E=∠F,∠OAE=∠OCF, 在△AOE和△COF中,, ∴△AOE≌△COF(ASA), ∴OE=OF.   8.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF. 【解答】证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∴∠BAC=∠DCA, ∴180°﹣∠BAC=180°﹣∠DCA, ∴∠EAB=∠FCD, ∵BE⊥AC,DF⊥AC, ∴∠BEA=∠DFC=90°, 在△BEA和△DFC中,, ∴△BEA≌△DFC(AAS), ∴AE=CF.   9.如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF. 【解答】证明:连接AC,交BD于点O,如图所示: ∵四边形ABCD是平行四边形, ∴OA=OC,OB=OD, ∵BF=ED, ∴OE=OF, ∵OA=OC, ∴四边形AECF是平行四边形, ∴AE∥CF.   10.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF. (1)试说明AC=EF; (2)求证:四边形ADFE是平行四边形. 【解答】证明:(1)∵Rt△ABC中,∠BAC=30°, ∴AB=2BC, 又∵△ABE是等边三角形,EF⊥AB, ∴AB=2AF ∴AF=BC, 在Rt△AFE和Rt△BCA中, , ∴Rt△AFE≌Rt△BCA(HL), ∴AC=EF; (2)∵△ACD是等边三角形, ∴∠DAC=60°,AC=AD, ∴∠DAB=∠DAC+∠BAC=90° 又∵EF⊥AB, ∴EF∥AD, ∵AC=EF,AC=AD, ∴EF=AD, ∴四边形ADFE是平行四边形.   11.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG. 【解答】证明:∵四边形ABCD是正方形, ∴∠ADF=CDE=90°,AD=CD. ∵AE=CF, ∴DE=DF, 在△ADF和△CDE中, ∴△ADF≌△CDE(SAS), ∴∠DAF=∠DCE, 在△AGE和△CGF中,, ∴△AGE≌△CGF(AAS), ∴AG=CG.   12.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF. 【解答】证明:∵四边形ABCD是矩形, ∴AD∥BC,∠B=90°, ∴∠AEB=∠DAE, ∵DF⊥AE, ∴∠AFD=∠B=90°, 在△ABE和△DFA中 ∵ ∴△ABE≌△DFA, ∴AB=DF.   13.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF. 求证:∠ABF=∠CBE. 【解答】证明:∵四边形ABCD是菱形, ∴AB=BC,∠A=∠C, ∵在△ABF和△CBE中,, ∴△ABF≌△CBE(SAS), ∴∠ABF=∠CBE.   14.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF. 求证:(1)△ADE≌△CDF; (2)∠BEF=∠BFE. 【解答】证明:(1)∵四边形ABCD是菱形, ∴AD=CD,∠A=∠C, ∵DE⊥BA,DF⊥CB, ∴∠AED=∠CFD=90°, 在△ADE和△CDF, ∵, ∴△ADE≌△CDF; (2)∵四边形ABCD是菱形, ∴AB=CB, ∵△ADE≌△CDF, ∴AE=CF, ∴BE=BF, ∴∠BEF=∠BFE.   15.如图,四边形ABCD是正方形,E、F分别是AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE. 【解答】证明:∵四边形ABCD是正方形, ∴AB=BC,∠A=∠CBE=90°, ∵BF⊥CE, ∴∠BCE+∠CBG=90°, ∵∠ABF+∠CBG=90°, ∴∠BCE=∠ABF, 在△BCE和△ABF中 , ∴△BCE≌△ABF(ASA), ∴BE=AF.   16.如图,四边形ABCD是正方形,点E,F分别在AD,DC上,且AE=DF. 求证:BE=AF. 【解答】证明:∵四边形ABCD是正方形, ∴AB=DA,∠BAE=∠ADF=90°, 在△BAE和△ADF中, , ∴△BAE≌△ADF(SAS), ∴BE=AF.   17.如图,四边形ABCD是正方形,△EBC是等边三角形. (1)求证:△ABE≌△DCE; (2)求∠AED的度数. 【解答】(1)证明:∵四边形ABCD是正方形,△ABC是等边三角形, ∴BA=BC=CD=BE=CE,∠ABC=∠BCD=90°,∠EBC=∠ECB=60°, ∴∠ABE=∠ECD=30°, 在△ABE和△DCE中, , ∴△ABE≌△DCE(SAS). (2)∵BA=BE,∠ABE=30°, ∴∠BAE=(180°﹣30°)=75°, ∵∠BAD=90°, ∴∠EAD=90°﹣75°=15°,同理可得∠ADE=15°, ∴∠AED=180°﹣15°﹣15°=150°.   18.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF. 【解答】证明:取AB的中点H,连接EH; ∵∠AEF=90°, ∴∠2+∠AEB=90°, ∵四边形ABCD是正方形, ∴∠1+∠AEB=90°, ∴∠1=∠2, ∵E是BC的中点,H是AB的中点, ∴BH=BE,AH=CE, ∴∠BHE=45°, ∵CF是∠DCG的角平分线, ∴∠FCG=45°, ∴∠AHE=∠ECF=135°, 在△AHE和△ECF中, , ∴△AHE≌△ECF(ASA), ∴AE=EF.   19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF. 【解答】证明:∵四边形ABCD是正方形, ∴AD=CD,∠DAB=∠C=90°, ∴∠FAD=180°﹣∠DAB=90°. 在△DCE和△DAF中, , ∴△DCE≌△DAF(SAS), ∴DE=DF.   20.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F. 求证:BE=CF. 【解答】证明:∵四边形ABCD为矩形, ∴AC=BD,则BO=CO. ∵BE⊥AC于E,CF⊥BD于F, ∴∠BEO=∠CFO=90°. 又∵∠BOE=∠COF, ∴△BOE≌△COF. ∴BE=CF.   21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE. (1)求证:BE=CE. (2)求∠BEC的度数. 【解答】(1)证明:∵四边形ABCD为正方形 ∴AB=AD=CD,∠BAD=∠ADC=90° ∵三角形ADE为正三角形 ∴AE=AD=DE,∠EAD=∠EDA=60° ∴∠BAE=∠CDE=150° 在△BAE和△CDE中, ∴△BAE≌△CDE ∴BE=CE; (2)∵AB=AD,AD=AE, ∴AB=AE, ∴∠ABE=∠AEB, 又∵∠BAE=150°, ∴∠ABE=∠AEB=15°, 同理:∠CED=15° ∴∠BEC=60°﹣15°×2=30°.   22.如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为3,CD=4,求BD的长. 【解答】(1)证明:如图,连接OC. ∵AB是⊙O的直径,C是⊙O上一点, ∴∠ACB=90°,即∠ACO+∠OCB=90°. ∵OA=OC,∠BCD=∠A, ∴∠ACO=∠A=∠BCD, ∴∠BCD+∠OCB=90°,即∠OCD=90°, ∴CD是⊙O的切线. (2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4, ∴OD==5, ∴BD=OD﹣OB=5﹣3=2.   23.如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数. 【解答】解:∵AB为⊙O直径 ∴∠ADB=90° ∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25° ∴∠BAD=90°﹣∠B=65°.   24.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F. (1)求证:DE⊥AC; (2)若AB=10,AE=8,求BF的长. 【解答】解:(1)连接OD、AD, ∵DE切⊙O于点D, ∴OD⊥DE, ∵AB是直径, ∴∠ADB=90°, ∵AB=AC, ∴D是BC的中点, 又∵O是AB中点, ∴OD∥AC, ∴DE⊥AC; (2)∵AB=10, ∴OB=OD=5, 由(1)得OD∥AC, ∴△ODF∽△AEF, ∴==, 设BF=x,AE=8, ∴=, 解得:x=, 经检验x=是原分式方程的根,且符合题意, ∴BF=.   25.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C. (1)求证:EF是⊙O的切线; (2)若sin∠EGC=,⊙O的半径是3,求AF的长. 【解答】解:(1)如图,连接EO,则OE=OC, ∴∠EOG=2∠C, ∵∠ABG=2∠C, ∴∠EOG=∠ABG, ∴AB∥EO, ∵EF⊥AB, ∴EF⊥OE, 又∵OE是⊙O的半径, ∴EF是⊙O的切线; (2)∵∠ABG=2∠C,∠ABG=∠C+∠A, ∴∠A=∠C, ∴BA=BC=6, 在Rt△OEG中,∵sin∠EGO=, ∴OG===5, ∴BG=OG﹣OB=2, 在Rt△FGB中,∵sin∠EGO=, ∴BF=BGsin∠EGO=2×=, 则AF=AB﹣BF=6﹣=.   26.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=16,DE=10,求BC的长. 【解答】(1)证明:连接OD, ∵DE是切线, ∴∠ODE=90°, ∴∠ADE+∠BDO=90°, ∵∠ACB=90°, ∴∠A+∠B=90°, ∵OD=OB, ∴∠B=∠BDO, ∴∠ADE=∠A. (2)连接CD. ∵∠ADE=∠A, ∴AE=DE, ∵BC是⊙O的直径,∠ACB=90°, ∴EC是⊙O的切线, ∴ED=EC, ∴AE=EC, ∵DE=10, ∴AC=2DE=20, 在Rt△ADC中,DC==12, 设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202, ∴x2+122=(x+16)2﹣202, 解得x=9, ∴BC==15.   27.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E. (1)求证:直线CE是⊙O的切线. (2)若BC=3,CD=3,求弦AD的长. 【解答】(1)证明:连接OD,如图, ∵AD平分∠EAC, ∴∠1=∠3, ∵OA=OD, ∴∠1=∠2, ∴∠3=∠2, ∴OD∥AE, ∵AE⊥DC, ∴OD⊥CE, ∴CE是⊙O的切线; (2)连接BD. ∵∠CDO=∠ADB=90°, ∴∠2=∠CDB=∠1,∵∠C=∠C, ∴△CDB∽△CAD, ∴==, ∴CD2=CB•CA, ∴(3)2=3CA, ∴CA=6, ∴AB=CA﹣BC=3,==,设BD=K,AD=2K, 在Rt△ADB中,2k2+4k2=9, ∴k=, ∴AD=.   28.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO. (1)求证:BC是∠ABE的平分线; (2)若DC=8,⊙O的半径OA=6,求CE的长. 【解答】(1)证明:∵DE是切线, ∴OC⊥DE, ∵BE∥CO, ∴∠OCB=∠CBE, ∵OC=OB, ∴∠OCB=∠OBC, ∴∠CBE=∠CBO, ∴BC平分∠ABE. (2)在Rt△CDO中,∵DC=8,OC=0A=6, ∴OD==10, ∵OC∥BE, ∴=, ∴=, ∴EC=4.8.   29.如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长. 【解答】解:连接OD,作OF⊥BE于点F. ∴BF=BE, ∵AC是圆的切线, ∴OD⊥AC, ∴∠ODC=∠C=∠OFC=90°, ∴四边形ODCF是矩形, ∵OD=OB=FC=2,BC=3, ∴BF=BC﹣FC=BC﹣OD=3﹣2=1, ∴BE=2BF=2.   30.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC. (1)求证:AC平分∠DAO. (2)若∠DAO=105°,∠E=30° ①求∠OCE的度数; ②若⊙O的半径为2,求线段EF的长. 【解答】解:(1)∵CD是⊙O的切线, ∴OC⊥CD, ∵AD⊥CD, ∴AD∥OC, ∴∠DAC=∠OCA, ∵OC=OA, ∴∠OCA=∠OAC, ∴∠OAC=∠DAC, ∴AC平分∠DAO; (2)①∵AD∥OC, ∴∠EOC=∠DAO=105°, ∵∠E=30°, ∴∠OCE=45°; ②作OG⊥CE于点G, 则CG=FG=OG, ∵OC=2,∠OCE=45°, ∴CG=OG=2, ∴FG=2, 在Rt△OGE中,∠E=30°, ∴GE=2, ∴.   31.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB. (1)求证:CE=CB; (2)若AC=2,CE=,求AE的长. 【解答】(1)证明:连接OC, ∵CD是⊙O的切线, ∴OC⊥CD. ∵AD⊥CD, ∴OC∥AD, ∴∠1=∠3. 又OA=OC, ∴∠2=∠3, ∴∠1=∠2, ∴CE=CB; (2)解:∵AB是直径, ∴∠ACB=90°, ∵AC=2,CB=CE=, ∴AB===5. ∵∠ADC=∠ACB=90°,∠1=∠2, ∴△ADC∽△ACB, ∴==,即==, ∴AD=4,DC=2. 在直角△DCE中,DE==1, ∴AE=AD﹣ED=4﹣1=3.   32.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D. (1)求证:△ADC∽△CDB; (2)若AC=2,AB=CD,求⊙O半径. 【解答】(1)证明:如图,连接CO, , ∵CD与⊙O相切于点C, ∴∠OCD=90°, ∵AB是圆O的直径, ∴∠ACB=90°, ∴∠ACO=∠BCD, ∵∠ACO=∠CAD, ∴∠CAD=∠BCD, 在△ADC和△CDB中, ∴△ADC∽△CDB. (2)解:设CD为x, 则AB=x,OC=OB=x, ∵∠OCD=90°, ∴OD===x, ∴BD=OD﹣OB=x﹣x=x, 由(1)知,△ADC∽△CDB, ∴=, 即, 解得CB=1, ∴AB==, ∴⊙O半径是.   33.如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC. (1)求证:PC是⊙O的切线; (2)若∠P=60°,PC=2,求PE的长. 【解答】解:(1)连接OC, ∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠BCO+∠ACO=90°, ∵OC=OB, ∴∠B=∠BCO, ∵∠PCA=∠ABC, ∴∠BCO=∠ACP, ∴∠ACP+∠OCA=90°, ∴∠OCP=90°, ∴PC是⊙O的切线; (2)∵∠P=60°,PC=2,∠PCO=90°, ∴OC=2,OP=2PC=4, ∴PE=OP﹣OE=OP﹣OC=4﹣2.   34.如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P. (1)求证:AP=AB; (2)若OB=4,AB=3,求线段BP的长. 【解答】(1)证明:∵OC=OB, ∴∠OCB=∠OBC, ∵AB是⊙O的切线, ∴OB⊥AB, ∴∠OBA=90°, ∴∠ABP+∠OBC=90°, ∵OC⊥AO, ∴∠AOC=90°, ∴∠OCB+∠CPO=90°, ∵∠APB=∠CPO, ∴∠APB=∠ABP, ∴AP=AB. (2)解:作OH⊥BC于H. 在Rt△OAB中,∵OB=4,AB=3, ∴OA==5, ∵AP=AB=3, ∴PO=2. 在Rt△POC中,PC==2, ∵•PC•OH=•OC•OP, ∴OH==, ∴CH==, ∵OH⊥BC, ∴CH=BH, ∴BC=2CH=, ∴PB=BC﹣PC=﹣2=.   35.如图,已知AB是⊙O的直径,点P为圆上一点,点C为AB延长线上一点,PA=PC,∠C=30°. (1)求证:CP是⊙O的切线. (2)若⊙O的直径为8,求阴影部分的面积. 【解答】(1)证明:连接OP,如图所示: ∵PA=PC,∠C=30°, ∴∠A=∠C=30°, ∴∠APC=120°, ∵OA=OP, ∴∠OPA=∠A=30°, ∴∠OPC=120°﹣30°=90°, 即OP⊥CP, ∴CP是⊙O的切线. (2)解:∵AB是⊙O的直径, ∴∠APB=90°, ∴∠OBP=90°﹣∠A=60°, ∵OP=OB=4, ∴△OBP是等边三角形, ∴∠POC=60°, ∵OP⊥CP, ∴∠C=30°, ∴OC=2OP=2OB=8, ∴PC===4, ∴阴影部分的面积=扇形OBP的面积﹣△OBP的面积=﹣××4×4=﹣4.   36.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM. (1)当AN平分∠MAB时,求DM的长; (2)连接BN,当DM=1时,求△ABN的面积; (3)当射线BN交线段CD于点F时,求DF的最大值. 【解答】解:(1)由折叠性质得:△ANM≌△ADM, ∴∠MAN=∠DAM, ∵AN平分∠MAB,∠MAN=∠NAB, ∴∠DAM=∠MAN=∠NAB, ∵四边形ABCD是矩形, ∴∠DAB=90°, ∴∠DAM=30°, ∴DM=AD•tan∠DAM=3×tan30°=3×=; (2)延长MN交AB延长线于点Q,如图1所示: ∵四边形ABCD是矩形, ∴AB∥DC, ∴∠DMA=∠MAQ, 由折叠性质得:△ANM≌△ADM, ∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1, ∴∠MAQ=∠AMQ, ∴MQ=AQ, 设NQ=x,则AQ=MQ=1+x, ∵∠ANM=90°, ∴∠ANQ=90°, 在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2, ∴(x+1)2=32+x2, 解得:x=4, ∴NQ=4,AQ=5, ∵AB=4,AQ=5, ∴S△NAB=S△NAQ=×AN•NQ=××3×4=; (3)过点A作AH⊥BF于点H,如图2所示: ∵四边形ABCD是矩形, ∴AB∥DC, ∴∠HBA=∠BFC, ∵∠AHB=∠BCF=90°, ∴△ABH∽△BFC, ∴=, ∵AH≤AN=3,AB=4, ∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示: 由折叠性质得:AD=AH, ∵AD=BC, ∴AH=BC, 在△ABH和△BFC中,, ∴△ABH≌△BFC(AAS), ∴CF=BH, 由勾股定理得:BH===, ∴CF=, ∴DF的最大值=DC﹣CF=4﹣.   37.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F. (1)证明:PC=PE; (2)求∠CPE的度数; (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由. 【解答】(1)证明:在正方形ABCD中,AB=BC, ∠
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服