收藏 分销(赏)

解一元二次方程(配方法).doc

上传人:仙人****88 文档编号:9453742 上传时间:2025-03-26 格式:DOC 页数:3 大小:79KB
下载 相关 举报
解一元二次方程(配方法).doc_第1页
第1页 / 共3页
解一元二次方程(配方法).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
解一元二次方程(配方法) 教学内容 间接即通过变形运用开平方法降次解方程. 教学目标 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重难点关键 1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 教学过程 一、复习引入 (学生活动)请同学们解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得 x=±或mx+n=±(p≥0). 如:4x2+16x+16=(2x+4)2 二、探索新知 列出下面二个问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢? 问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”. 大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗? 问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少? 老师点评:问题1:设总共有x只猴子,根据题意,得: x=(x)2+12 整理得:x2-64x+768=0 问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500 整理,得:x2-36x+70=0 (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有. (2)不能. 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2-64x+768=0 移项→ x=2-64x=-768 两边加()2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024 左边写成平方形式 → (x-32)2=256 降次→x-32=±16 即 x-32=16或x-32=-16 解一次方程→x1=48,x2=16 可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子. 学生活动: 例1.按以上的方程完成x2-36x+70=0的解题. 老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,x-18=或x-18=-,x1≈34,x2≈2. 可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2. 例2.解下列关于x的方程 (1)x2+2x-35=0 (2)2x2-4x-1=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6 x-1=6,x-1=-6 x1=7,x2=-5 可以,验证x1=7,x2=-5都是x2+2x-35=0的两根. (2)x2-2x-=0 x2-2x= x2-2x+12=+1 (x-1)2= x-1=±即x-1=,x-1=- x1=1+,x2=1- 可以验证:x1=1+,x2=1-都是方程的根. 三、巩固练习 讨论改为课堂练习,并说明理由. 练习1 2.(1)、(2). 四、应用拓展 例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半. 分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式. 解:设x秒后△PCQ的面积为Rt△ACB面积的一半. 根据题意,得:(8-x)(6-x)=××8×6 整理,得:x2-14x+24=0 (x-7)2=25即x1=12,x2=2 x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去. 所以2秒后△PCQ的面积为Rt△ACB面积的一半. 五、归纳小结 本节课应掌握: 左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程. 六、布置作业 复习巩固2.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服