资源描述
“数数看,找规律”教学设计
罗嗣都
(一)教学目标
1.知识目标
通过对图形摆放的活动,发展学生的观念,积累数学活动的经验,在看一看、做一做、想一想、数一数的过程中,归纳出图形个数的规律,进而会利用经验检验规律。
2.能力目标
通过经历“做数学”和“学数学”的过程,培养学生动手能力,提高动脑能力,在活动中获得想象能力及合作交流意识。
3.情感目标
活动过程是老师与学生及学生与学生的交往、互动、共同发展的过程,在参与、观察过程中,培养学生学习数学的兴趣,同时增强学生的自信心与审美情趣。
另外,引用数学史料,使学生更好地了解问题的背景,学习科学家勤于动手,善于动脑的治学精神,树立勇于攀登科学巅峰的远大理想。
4.教学重点难点
(1)教学重点
利用折叠出的五个正多面体,数出它们的顶点数、面数和棱数,找出规律。
(2)教学难点
如何折叠出正八面体和正十二面体;如何正确地数出正十二面体的顶点数和棱数。
二、教学方法
情境导人一观察与思考一动手折叠一探究规律一知识引伸与拓展
三、学习方法
指导学生转变学习方式,既要主动地富有个性地学习,又提倡通过合作与交流来共同探索和研究的学习方式,即自主探究式,促进学生创新意识的形成与实践能力的培养。
四、教学过程
教学过程:
(一)问题情境引入
面对一座座宏伟壮丽的建筑,一尊尊形神兼备的雕塑,一件件精巧典雅的物品,我们常常惊叹于它的美妙。我们深人观察就会发现,千姿百态的图形构成了丰富多彩的世界,形态各异的立体图形几乎无处不在,而许多立体图形就是由一些平面图形围成的。让我们一起进人立体图形的世界,共同探究它的奥妙与规律吧!这节课通过动手,对几种正多面体进行展开和折叠,寻找它们的顶点数、面数和棱数三者之间的规律。
(二)观察思考
请看这五个正多面体,向学生提出问题:你认识他们吗?让学生在欣赏的同时感知正多面体、顶点以及面和棱。
(三)折叠
演示正六面体的展开与还原(即折叠还原),由学生分组完成折叠出正四面体、正八面体、正十二面体、正二十面体。
1.难点
在折叠正八面体、正十二面体时容易出错。
2.解决方法
让学生仔细观察模型,看老师演示,充分利用对称性折叠,还要同组人大胆试探,相互合作;老师巡视指导,发现成功组及时鼓励,并由一人介绍(讲解)成功的方法,同时利用CAI辅助。
(四)数一数,填表找规律
1.难点
面数可由名称得到,也可由展开图上数出,但顶点数和棱数不容易数准确。
2.解决方法
(1)放在桌面上不转动;
(2)对称地找;
(3)在起始地方作标记。
(五)背景引入
历史上曾有一些著名的科学家研究过正多面体,著名数学家欧拉惊奇地发现了V,F、E之间存在这样一个奇妙的相等关系。图形世界尽管形态各异,只要我们像科学家一样多动手,多动脑,一定能找出其中的奥妙。
(六)做一做 想一想
1.把正四面体截去一个角,看看所得的立体还是正多面体吗?再数一数它的顶点数、面数和棱数,看看V+F-E=2成立吗?
2.试试看,你能做一个任意六面体吗?七面体呢?公式V+F-E=2成立吗?由此,你又能得到什么结论?
五、教学评价
(一)通过折叠正多面体的模型,培养学生的动手能力与合作能力;
(二)从填表找规律上,提高学生接受新知识的能力与动脑能力;
(三)从知识的引伸与拓展的设计上,培养学生的动手、动脑与合作的综合能力.
何成功老师
(编)
数学探索题训练
—
找规律
1
、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入
„
1
2
3
4
5
„
输出
„
2
1
5
2
10
3
17
4
26
5
„
那么,当输入数据是
8
时,输出的数据是(
)
A
、
61
8
B
、
63
8
C
、
65
8
D
、
67
8
2
、如下左图所示,摆第一个“小屋子”要
5
枚棋子,摆第二个要
11
枚棋子,摆第三个要
17
枚棋子,则摆第
30
个“小屋子”要
展开阅读全文