资源描述
第二讲:平行四边形(一)
【知识梳理】
1、平行四边形:
平行四边形的定义决定了它有以下几个基本性质:
(1)平行四边形对角相等;
(2)平行四边形对边相等;
(3)平行四边形对角线互相平分。
除了定义以外,平行四边形还有以下几种判定方法:
(1)两组对角分别相等的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)对角线互相平分的四边形是平行四边形;
(4)一组对边平行且相等的四边形是平行四边形。
2、特殊平行四边形:
一、矩形
(1)有一角是直角的平行四边形是矩形
(2)矩形的四个角都是直角;
(3)矩形的对角线相等。
(4)矩形判定定理1:有三个角是直角的四边形是矩形
(5)矩形判定定理2:对角线相等的平行四边形是矩形
二、菱形
(1)把一组邻边相等的平行四边形叫做菱形.
(2)定理1:菱形的四条边都相等
(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.
(4)菱形的面积等于菱形的对角线相乘除以2
(5)菱形判定定理1:四边都相等的四边形是菱形
(6)菱形判定定理2:对角线互相垂直的平行四边形是菱形。
三、正方形
(1)有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形
(2)性质:①四个角都是直角,四条边相等
②对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)判定:①一组邻边相等的矩形是正方形
②有一个角是直角的菱形是正方形
【例题精讲】
【例1】填空题:
平行四边形具有的是:
矩形具有的是:
菱形具有的是:
正方形具有的是:
在下列特征中,
(1) 四条边都相等
(2) 对角线互相平分
(3) 对角线相等
(4) 对角线互相垂直
(5) 四个角都是直角
(6) 每一条对角线平分一组对角
(7) 对边相等且平行
(8) 邻角互补
【巩固】
1、下列说法中错误的是( )
A.四个角相等的四边形是矩形 B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形 D.对角线互相垂直的矩形是正方形
2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )
A.矩形 B.菱形 C.正方形 D.菱形、矩形或正方形
3、下面结论中,正确的是( )
A.对角线相等的四边形是矩形 B.对角线互相平分的四边形是平行四边形
C.对角线互相垂直的四边形是菱形 D.对角线互相垂直且相等的四边形是正方形
4、如图,在中,点D、E、F分别在边、、上,且,.下列四种说法:
①四边形是平行四边形;
②如果,那么四边形是矩形;
③如果平分,那么四边形是菱形;
④如果且,那么四边形是菱形.
其中,正确的有 .(只填写序号)
A
F
C
D
B
E
【例2】如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.
求证:四边形BFDE是平行四边形.
A
E
D
C
F
B
【巩固】已知,如图9,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
四边形ABCD是平行四边形吗?请说明理由.
【例3】如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.
求证:四边形AECD是菱形.
【例4】如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.
【巩固】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
【例5】如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.
C
B
A
D
F
E
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足_________________________条件时,四边形DAEF是矩形;
②当△ABC满足_________________________条件时,四边形DAEF是菱形;
③当△ABC满足_________________________条件时,以D、A、E、F为顶点的四边形不存在.
展开阅读全文