收藏 分销(赏)

动圆问题练习二.doc

上传人:仙人****88 文档编号:9355025 上传时间:2025-03-23 格式:DOC 页数:4 大小:137.50KB
下载 相关 举报
动圆问题练习二.doc_第1页
第1页 / 共4页
动圆问题练习二.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
动圆问题练习二 一.例题 1.如图,已知点A(0,2),直线l:y=-x-2与x轴交于D点,与y轴交于E点,B是直线l上的一个动点,以AB为直径的圆记作⊙M. (1)判断点D是否在⊙M上,并说明理由; (2)当⊙M与x轴相切时,求B点的坐标; (3)若△ABE为等腰三角形,求出所有符合条件的圆心M的坐标. 2.如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒. (1)求点C的坐标;(2)当∠BCP=15°时,求t的值; (3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值. 二.练习 1.如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动. (1)当点P运动到圆上时,求线段OP的长. (2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由. 2.如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E; (2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由. (3)当AB=5,BC=6时,求⊙O的半径. 3.如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E. (1)画出旋转后的Rt△ADE; (2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度; (3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由. 4.已知⊙O1经过A(-4,2),B(-3,3),C(-1,-1),O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.(1)在右边的平面直角坐标系中画出⊙O1,直线l与⊙O1的交点坐标为 (2)若⊙O1上存在整点P(横坐标与纵坐标均为整数的点称为整点),使得△APD为等腰三角形,所有满足条件的点P坐标为 (3)将⊙O1沿x轴向右平移 个单位时,⊙O1与y相切; (4)将⊙O1沿x轴向右平移 个单位时,⊙O1与l相切. 5.如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P. (1)求PA的长; (2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由; (3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围. 6.如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t. (1)请求出⊙O2与腰CD相切时t的值; (2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切? 7.如图,⊙C经过坐标原点O,分别交x轴正半轴、y轴正半轴于点B、A,点B的坐标为(4,0),点M在⊙C上,并且∠BMO=120度.(1)求直线AB的解析式; (2)若点P是⊙C上的点,过点P作⊙C的切线PN,若∠NPB=30°,求点P的坐标; (3)若点D是⊙C上任意一点,以B为圆心,BD为半径作⊙B,并且BD的长为正整数. ①问这样的圆有几个?它们与⊙C有怎样的位置关系? ②在这些圆中,是否存在与⊙C所交的弧(指⊙B上的一条弧)为90°的弧,若存在,请给出证明;若不存在,请说明理由. 8.如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y. (1)求y与x的函数关系式; (2)试讨论以P为圆心,半径长为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服