资源描述
中考数学常用公式及性质
1. 乘法与因式分解
①(a+b)(a-b)=a2-b2; ②(a±b)2=a2±2ab+b2;
③ a2+b2=(a+b)2-2ab; ( a-b)2=(a+b)2-4ab。
2. 幂的运算性质
①am×an=am+n; ②am÷an=am-n; ③(am)n=amn; ④(ab)n=anbn; ⑤()n=;
⑥a-n=,特别:()-n=()n; ⑦a0=1(a≠0)。
3. 二次根式
①()2=a(a≥0); ②=丨a丨; ③=×; ④=(a>0,b≥0)。
4. 一元二次方程
对于方程:ax2+bx+c=0:
①求根公式是x=,其中△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根;
当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。
5. 一次函数
一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标,称为截距)。
①当k>0时,y随x的增大而增大(直线从左向右上升);
②当k<0时,y随x的增大而减小(直线从左向右下降);
③特别地:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点。
6. 反比例函数
反比例函数y=(k≠0)的图象叫做双曲线。
①当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);
②当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升)。
7. 二次函数
(1).定义:一般地,如果是常数,,那么叫做的二次函数。
(2).抛物线的三要素:开口方向、对称轴、顶点。
①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;
相等,抛物线的开口大小、形状相同。
②平行于轴(或重合)的直线记作.特别地,轴记作直线。
(3).几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
当时
开口向上
当时
开口向下
(轴)
(0,0)
(轴)
(0, )
(,0)
(,)
()
(4).求抛物线的顶点、对称轴的方法
①公式法:,∴顶点是,
对称轴是直线。
②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点(y值相同),则对称轴方程可以表示为:
(5).抛物线中,的作用
①决定开口方向及开口大小,这与中的完全一样。
②和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线。
,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧。
③的大小决定抛物线与轴交点的位置。
当时,,∴抛物线与轴有且只有一个交点(0,):
①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 。
(6).用待定系数法求二次函数的解析式
①一般式:.已知图像上三点或三对、的值,通常选择一般式.
②顶点式:.已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与轴的交点坐标、,通常选用交点式:。
8. 统计初步
(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
(2)公式:设有n个数x1,x2,…,xn,那么:
①平均数为:;
②方差:数据、……, 的方差为,
则=
一组数据的方差越大,这组数据的波动越大,越不稳定。
9. 频率与概率
(1)频率
频率=,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率
①如果用P表示一个事件A发生的概率,则0≤P(A)≤1;
P(必然事件)=1;P(不可能事件)=0;
②运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;
10. 锐角三角形
①设∠A是△ABC的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=,∠A的正切:tanA=.并且sin2A+cos2A=1。
0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小。
②特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,
tan30º=,tan45º=1,tan60º=。
h
l
α
④斜坡的坡度:i==.设坡角为α,则i=tanα=。
11. 平面直角坐标系中的有关知识
(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
(2)坐标平移:上加下减,左减右加
12. 多边形内角和公式
多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º
13. 圆的有关性质
(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径。
(2)一条弧所对的圆周角等于它所对的圆心角的一半。(3)同弧或等弧所对的圆周角相等。
(4)在同圆或等圆中,相等的圆周角所对的弧相等。(5)圆内接四边形的对角互补。
(6)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦。、
14. 三角形的内心与外心
(1)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点。
(2)三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
常见结论:①Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径;
②△ABC的周长为,面积为S,其内切圆的半径为r,则
15. 面积公式
①S正△=×(边长)2.
②S平行四边形=底×高.
③S菱形=底×高=×(对角线的乘积)
④
⑤S圆=πR2.
⑥l圆周长=2πR.
⑦弧长L=.
⑧
⑨S圆柱侧=底面周长×高=2πrh,
S全面积=S侧+S底=2πrh+2πr2
⑩S圆锥侧=×底面周长×母线=πrb,
S全面积=S侧+S底=πrb+πr2
展开阅读全文