资源描述
*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,指数,对数,积、商、幂的对数,指数,对数,4.2.2,积、商、幂的对数,1.,对数的定义,若,a,b,=,N,(,a,0 且,a,1),,,则,log,a,N,=,b,2.,指数幂的运算法则,(1),a,m,a,n,=,a,m,n,;,(,2,),(,a,m,),n,=,a,m n,;,(,3,),(,a b,),m,=,a,m,b,m,.,引入,解,设,log,a,M,=,p,,,log,a,N,=,q,,,根据对数的定义,可得,M,=,a,p,,,N,=,a,q,,,因为,M N,=,a,p,a,q,=,a,p,q,,,所以,log,a,M N,=,p,q,=,log,a,M,log,a,N,已知,log,a,M,,,log,a,N,(,M,,,N,0),求,log,a,M N,探究,1,探究,探究,2,已知,N,1,,,N,2,,,,,N,k,都是大于,0,的数,,解,log,a,(,N,1,N,2,N,k,),=,log,a,N,1,log,a,N,2,log,a,N,k,log,a,(,N,1,N,2,N,k,)等于什么?,探究,M,N,已知,log,a,M,,,log,a,N,(,M,,,N,0),求,log,a,探究,3,解,设,log,a,M,=,p,,,log,a,N,=,q,,,根据对数的定义,可得,M,=,a,p,,,N,=,a,q,,,因为,=,=,a,p,q,,,所以,log,a,=,p,q,=,log,a,M,log,a,N,M,N,a,p,a,q,M,N,探究,解,设,log,a,M,=,p,,,根据对数的定义,可得,M,=,a,p,,,因为,M,b,=,(,a,p,),b,=,a,b,p,,,所以,log,a,M,b,=,b,p,=,b,log,a,M,已知,log,a,M,(,M,0),求,log,a,M,b,探究,4,探究,结论:,(1),log,a,M,N,=,log,a,M,log,a,N,log,a,(,N,1,N,2,N,k,),=,log,a,N,1,log,a,N,2,log,a,N,k,正因数积的对数等于各因数对数的和,(2),log,a,=,log,a,M,log,a,N,M,N,两个正数商的对数等于被除数的对数减去除数的对数,(3),log,a,M,b,=,b,p,=,b,log,a,M,正数幂的对数等于幂的指数乘以幂的底数的对数,新授,例1,用,log,a,x,,,log,a,y,,,log,a,z,表示下列各式:,解,(1)log,a,=,log,a,(,x y,),log,a,z,=,log,a,x,log,a,y,log,a,z,;,xy,z,(,2,),log,a,x,3,y,5,=,log,a,x,3,log,a,y,5,=,3 log,a,x,5 log,a,y,;,(1)log,a,;,(2),log,a,x,3,y,5,;,(3),log,a,;(4),log,a,xy,z,y,x,2,z,3,x,yz,例题,例1,用,log,a,x,,,log,a,y,,,log,a,z,表示下列各式:,解,(1)log,a,;,(2),log,a,x,3,y,5,;,(3),log,a,;(4),log,a,xy,z,y,x,2,z,3,x,yz,(,3,)log,a,=,log,a,log,a,(,y z,),=,log,a,x,(,log,a,y,log,a,z,),=,log,a,x,log,a,y,log,a,z,;,x,yz,x,1,2,1,2,例题,例1,用,log,a,x,,,log,a,y,,,log,a,z,表示下列各式:,解,(1)log,a,;,(2),log,a,x,3,y,5,;,(3),log,a,;(4),log,a,xy,z,y,x,2,z,3,x,yz,(4)log,a,log,a,x,2,log,a,y,log,a,z,2 log,a,x,log,a,y,log,a,z,y,x,2,z,3,1,2,1,3,1,3,1,2,例题,练习1,请用,lg,x,,,lg,y,,,lg,z,,,lg(,x,y,),,,lg(,x,y,),表示下列各式,:,(1)lg(,x y z,),;,(2)lg(,x,y,),z,;,(3)lg(,x,2,y,2,),;,(4)lg,xy,2,z,练习,log,2,(,4,7,2,5,),=,log,2,4,7,log,2,2,5,=,7 log,2,45 log,2,2,=,145,=,19,例 2,计算:,log,2,(,4,7,2,5,),lg,100,,5,解,lg,100,5,=,lg 100,=,;,1,5,2,5,例题,练习2,计算,(1)log,3,(279,2,),;,(2)lg 100,2,;,(3)log,2,6,log,2,3,;,(4)lg 5,lg 2,练习,结论:,(1),log,a,M,N,=,log,a,M,log,a,N,log,a,(,N,1,N,2,N,k,),=,log,a,N,1,log,a,N,2,log,a,N,k,正因数积的对数等于各因数对数的和,(2),log,a,=,log,a,M,log,a,N,M,N,两个正数商的对数等于被除数的对数减去除数的对数,(3),log,a,M,b,=,b,p,=,b,log,a,M,正数幂的对数等于幂的指数乘以幂的底数的对数,归纳小结,课后作业,必做题:,教材,P110,,练,习 B 组第 1、2题,;,选做题:,教材,P110,,练,习 B 组第 3,题,
展开阅读全文