1、机械原理课程设计说明书题目: 铰链式颚式破碎机方案分析 班 级 :姓 名 :学 号 :指导教师 : 成 绩 :2011 年 9 月 26 日目 录 一 设计题目1二 已知条件及设计要求32.1已知条件32.2设计要求3三. 机构的结构分析43.1六杆铰链式破碎机43.2四杆铰链式破碎机4四. 机构的运动分析44.1六杆铰链式颚式破碎机的运动分析44.2四杆铰链式颚式破碎机的运动分析7五.机构的动态静力分析 105.1六杆铰链式颚式破碎机的静力分析105.2四杆铰链式颚式破碎机的静力分析16六. 工艺阻力函数及飞轮的转动惯量函数 126.1工艺阻力函数程序 216.2飞轮的转动惯量函数程序21七
2、 .对两种机构的综合评价21八 . 主要的收获和建议22九 . 参考文献22一 设计题目:铰链式颚式破碎机方案分析二 已知条件及设计要求2.1 已知条件 图1.1 六杆铰链式破碎机 图1.2 工艺阻力 图1.3 四杆铰链式破碎机图(a)所示为六杆铰链式破碎机方案简图。主轴1的转速为n1 = 170r/min,各部尺寸为:lO1A = 0.1m, lAB = 1.250m, lO3B = 1m, lBC = 1.15m, lO5C = 1.96m, l1=1m, l2=0.94m, h1=0.85m, h2=1m。各构件质量和转动惯量分别为:m2 = 500kg, Js2 = 25.5kgm2,
3、 m3 = 200kg, Js3 = 9kgm2, m4 = 200kg, Js4 = 9kgm2, m5=900kg, Js5=50kgm2, 构件1的质心位于O1上,其他构件的质心均在各杆的中心处。D为矿石破碎阻力作用点,设LO5D = 0.6m,破碎阻力Q在颚板5的右极限位置到左极限位置间变化,如图(b)所示,Q力垂直于颚板。图(c)是四杆铰链式颚式破碎机方案简图。主轴1 的转速n1=170r/min。lO1A = 0.04m, lAB = 1.11m, l1=0.95m, h1=2m, lO3B=1.96m,破碎阻力Q的变化规律与六杆铰链式破碎机相同,Q力垂直于颚板O3B,Q力作用点为
4、D,且lO3D = 0.6m。各杆的质量、转动惯量为m2 = 200kg, Js2=9kgm2,m3 = 900kg, Js3=50kgm2。曲柄1的质心在O1 点处,2、3构件的质心在各构件的中心。2.2 设计要求试比较两个方案进行综合评价。主要比较以下几方面:1. 进行运动分析,画出颚板的角位移、角速度、角加速度随曲柄转角的变化曲线。2. 进行动态静力分析,比较颚板摆动中心运动副反力的大小及方向变化规律,曲柄上的平衡力矩大小及方向变化规律。3. 飞轮转动惯量的大小。三 机构的结构分析3.1六杆铰链式破碎机10BO5CD7116359823六杆铰链式破碎机拆分为机架和主动件,构件组成的RRR
5、杆组,构件组成的RRR杆组。21AO1 + +3.2四杆铰链式破碎机6AO33D5742B四杆铰链式破碎机拆分为机架和主动件,构件组成的RRR杆组。21AO1 +四 机构的运动分析4.1六杆铰链式颚式破碎机的运动分析(1)调用bark函数求主动件中2点的运动参数。见表4.1。表4.1形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap(2)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.2。表4.2形式参数mn1n2n3k1k2r1r2twepvpap实值-124323r23r34twepvpap(3)调用rrrk函数对由构件组成的R
6、RR杆组进行运动分析。见表4.3。表4.3形式参数mn1n2n3k1k2r1r2twepvpap实值136545r35,r56twepvpap(4)六杆运动程序:#include graphics.h#include subk.c#include draw.cmain()static double p202,vp202,ap202;static double t10,w10,e10,del;static double draw370,tdraw370,wdraw370,edraw370; static int ic; double r12,r23,r34,r35,r56,r67,gam1; d
7、ouble pi,dr; double r2,vr2,ar2; int i; FILE *fp; r12=0.1; r34=1.0;r23=1.250; r56=1.96;r35=1.15; r67=0.6; gam1=0.0; pi=4.0*atan(1.0); w1=-170.0*2*pi/60.0;e1=0.0; del=15.0; dr=pi/180.0; p11=0.0;/*try again */ p12=0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; printf(n The Kinematic Parameters of Point6n
8、); printf(No THETA1 S7 V7 A7n); printf( deg rad rad/s rad/s/sn); ic=(int)(360.0/del); for(i=0;i=ic;i+)t1=(-i)*del*dr; bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(-1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); drawi=t1/dr; tdrawi=t5; wdrawi=w5; edrawi=e5;if(fp=fopen(f
9、ile_ww.txt,w)=NULL) printf(Cant open this file./n); exit(0); for(i=0;i=ic;i+)printf(n%2d %12.3f %12.3f %12.3f%12.3fn,i+1,drawi,tdrawi,wdrawi,edrawi);fprintf(fp,n%2d %e %e %e %en,i+1,drawi,tdrawi,wdrawi,edrawi); if(i%18)=0)getch(); fclose(fp); getch(); draw1(del,tdraw,wdraw,edraw,ic);运算结果: The Kinema
10、tic Parameters of Point5No THETA1 T7 W7 E7 deg rad rad/s rad/s/s1 0.000 -1.658 0.346 3.9562 -15.000 -1.653 0.392 2.0023 -30.000 -1.647 0.400 -0.9324 -45.000 -1.641 0.362 -4.3555 -60.000 -1.637 0.274 -7.5066 -75.000 -1.633 0.146 -9.6127 -90.000 -1.632 -0.001 -10.1838 -105.000 -1.633 -0.145 -9.1659 -1
11、20.000 -1.637 -0.265 -6.90410 -135.000 -1.641 -0.345 -3.98111 -150.000 -1.646 -0.382 -1.00812 -165.000 -1.652 -0.377 1.51913 -180.000 -1.657 -0.341 3.29714 -195.000 -1.662 -0.284 4.23715 -210.000 -1.666 -0.220 4.43616 -225.000 -1.668 -0.156 4.12117 -240.000 -1.670 -0.10 3.58418 -255.000 -1.671 -0.05
12、1 3.10519 -270.000 -1.672 -0.007 2.89820 -285.000 -1.672 0.036 3.06321 -300.000 -1.671 0.085 3.57122 -315.000 -1.669 0.142 4.24723 -330.000 -1.667 0.209 4.79124 -345.000 -1.663 0.281 4.81725 -360.000 -1.658 0.346 3.956图4.1六杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线4.2四杆铰链式颚式破碎机的运动分析(1)调用bark函数求主动件中2点的运动参数。见表4.4。表4
13、.4形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap(2)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.5。表4.5形式参数mn1n2n3k1k2r1r2twepvpap实值124323r23r34twepvpap(3)四杆运动程序:#include graphics.h#include subk.c#include draw.cmain()static double p202,vp202,ap202;static double t10,w10,e10,del;static double draw370,tdraw370,wdr
14、aw370,edraw370; static int ic; double r12,r34,r23,r45,gam1; double pi,dr; double r2,vr2,ar2; int i; FILE *fp; r12=0.04; r34=1.96; r23=1.11; r45=0.6; gam1=0.0; pi=4.0*atan(1.0); w1=-170.0*2*pi/60.0; e1=0.0; del=15.0; dr=pi/180.0; p11=0.0;/*try again */ p12=0.0; p41=-0.95; p42=2.0; printf(n The Kinema
15、tic Parameters of Point6n); printf(No THETA1 S3 V3 A3n); printf( deg rad rad/s rad/s/sn); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(-i)*del*dr; bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap); drawi=t1/dr; tdrawi=t3; wdrawi=w3; edrawi=e3; if(fp=fopen(file_ww.txt,w)=N
16、ULL) printf(Cant open this file./n); exit(0); for(i=0;i=ic;i+)printf(n%2d %12.3f %12.3f %12.3f%12.3fn,i+1,drawi,tdrawi,wdrawi,edrawi);fprintf(fp,n%2d %e %e %e %en,i+1,drawi,tdrawi,wdrawi,edrawi); if(i%18)=0)getch(); fclose(fp); getch(); draw1(del,tdraw,wdraw,edraw,ic);运算结果: The Kinematic Parameters
17、of Point3No THETA1 S3 V3 A3 deg m m/s m/s/s1 0.000 -1.632 0.014 -6.2322 -15.000 -1.632 -0.077 -6.0983 -30.000 -1.634 -0.163 -5.5914 -45.000 -1.637 -0.240 -4.7315 -60.000 -1.641 -0.301 -3.5536 -75.000 -1.646 -0.343 -2.1177 -90.000 -1.651 -0.362 -0.5018 -105.000 -1.656 -0.357 1.1929 -120.000 -1.661 -0
18、.327 2.84810 -135.000 -1.666 -0.274 4.33911 -150.000 -1.669 -0.201 5.54412 -165.000 -1.671 -0.113 6.35813 -180.000 -1.672 -0.016 6.70314 -195.000 -1.672 0.082 6.54515 -210.000 -1.670 0.174 5.89416 -225.000 -1.667 0.253 4.80717 -240.000 -1.663 0.313 3.38418 -255.000 -1.658 0.351 1.74619 -270.000 -1.6
19、53 0.364 0.03020 -285.000 -1.647 0.352 -1.63921 -300.000 -1.642 0.317 -3.14922 -315.000 -1.638 0.261 -4.41523 -330.000 -1.635 0.189 -5.37524 -345.000 -1.632 0.105 -5.98825 -360.000 -1.632 0.105 -5.988图4.1四杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线五.机构的动态静力分析5.1六杆铰链式颚式破碎机的静力分析(1)调用bark函数对主动件进行运动分析。见表4.1。(2) 调用rrrk函
20、数对由构件组成的RRR杆组进行运动分析。见表4.2。(3) 调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.3。(4)求各构件的质心11、8、9、10点及矿石破碎阻力作用点7点的运动参数。见表5.1表5.5。表5.1 7点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值60750.0r670.0twepvpap表5.2 8点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值20820.0r23/20.0twepvpap表5.3 9点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值40930.0r34/20.0twepvpap表5.4
21、10点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值301040.0r35/20.0twepvpap表5.5 11点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值601150.0r56/20.0twepvpap(5)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.6。表5.6形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwefr实值365101107745pvpaptwefr(6)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.7。表5.7形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwef
22、r实值2438903023pvpaptwefr(7)调用barf对主动件进行静力分析。见表5.8。表5.8形式参数n1ns1nn1k1papefrtb实值1121papefr&tb六杆受力程序#include graphics.h#include subk.c#include subf.c#include draw.cmain() static double p202,vp202,ap202,del; static double t10,w10,e10,tbdraw370,tb1draw370,fr1draw370,sita1370,fr2draw370,sita2370,fr3draw370
23、,sita3370; static double fr202,fe202; static int ic; double r12,r34,r23,r35,r47,r56,r67; double gam1,gam2,tb; int i; double pi,dr,fr6,bt6,we1,we2,we3,we4,we5,tb1; FILE*fp; char *m=tb,tb1,fr1,fr2; sm1=0.0;sm2=500.0;sm3=200.0;sm4=200.0;sm5=900.0;sj1=0.0; sj2=25.2;sj3=9.0;sj4=9;sj5=50.0; r12=0.1; r34=1
24、.0;r23=1.250; r56=1.96;r35=1.15; r67=0.6; pi=4.0*atan(1.0);dr=pi/180.0; w1=-170.0*2*pi/60.0;e1=0.0;del=15.0; p11=0.0; p12=0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; printf(n The Kineto-static Analysis of a Six-bar Linkasen);printf( NO THETA1 FR1 BT TB TB1n);printf( (deg.) (N) (deg.) (N.m) (N.m)n);
25、 if(fp=fopen(file.txt,w)=NULL) printf(Cant open this file./n); exit(0); fprintf(fp,n The Kineto-static Analysis of a Six-bar Linkasen);fprintf(fp,NO THETA1 FR1 FR2 BT2 TB TB1n );fprintf(fp, (deg.) (N) (deg.) (N) (deg.) (N.m)(N.m)n ); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(double)(-i)*del*dr); bar
26、k(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(-1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); bark(6,0,7,5,0.0,r67,0.0,t,w,e,p,vp,ap); bark(2,0,8,2,0.0,r23/2,0.0,t,w,e,p,vp,ap); bark(4,0,9,3,0.0,r34/2,0.0,t,w,e,p,vp,ap); bark(3,0,10,4,0.0,r35/2,0.0,t,w,e,p,vp,ap); bark(6,0
27、,11,5,0.0,r56/2,0.0,t,w,e,p,vp,ap); rrrf(3,6,5,10,11,0,7,7,4,5,p,vp,ap,t,w,e,fr); rrrf(2,4,3,8,9,0,3,0,2,3,p,vp,ap,t,w,e,fr); barf(1,1,2,1,p,ap,e,fr,&tb); fr6=sqrt(fr61*fr61+fr62*fr62); bt6=atan2(fr62,fr61); we1=-(ap11*vp11+(ap12+9.81)*vp12)*sm1-e1*w1*sj1; we2=-(ap81*vp81+(ap82+9.81)*vp82)*sm2-e2*w2
28、*sj2; we3=-(ap91*vp91+(ap92+9.81)*vp92)*sm3-e3*w3*sj3; we4=-(ap101*vp101+(ap102+9.81)*vp102)*sm4-e4*w4*sj4; extf(p,vp,ap,t,w,e,7,fe); we5=-(ap111*vp111+(ap112+9.81)*vp112)*sm5-e5*w5*sj5+fe71*vp71+fe72*vp72; tb1=-(we1+we2+we3+we4+we5)/w1; printf(%2d %10.3f %10.3f %10.3f %10.3f %10.3f n,i+1,t1/dr,fr6,
29、bt6/dr,tb,tb1);fprintf(fp,%2d %10.3f %10.3f %10.3f %10.3f %10.3f,i+1,t1/dr,fr6,bt6/dr,tb,tb1); tbdrawi=tb; tb1drawi=tb1; fr1drawi=fr6;sita1i=bt6; fr2drawi=fr6;sita2i=bt6; fr3drawi=fr6;sita3i=bt6; if(i%16)=0)getch(); fclose(fp); getch(); draw2(del,tbdraw,tb1draw,ic,m); draw3(del,sita1,fr1draw,sita2,f
30、r2draw,sita3,fr3draw,ic,m); extf(p,vp,ap,t,w,e,nexf,fe)double p202,vp20,ap202,t10,w10,e10,fe202;int nexf; double pi,dr; pi=4.0*atan(1.0);dr=pi/180.0;if(t1/dr=-273.0) fenexf1=-85000.0/(-183.0*dr)*(t1+90*dr)*sin(t5);fenexf2=85000.0/(-183.0*dr)*(t1+90*dr)*cos(t5);else fenexf1=0.0; fenexf2=0.0; 运行结果: Th
31、e Kineto-static Analysis of a Six-bar LinkaseNO THETA1 FR4 BT2 TB TB1(deg.) (N) (deg.) (N.m) (N.m) 1 0.000 9904.580 77.690 534.454 534.454 2 -15.000 10248.086 82.670 1038.448 1038.448 3 -30.000 10522.852 89.576 1434.905 1434.905 4 -45.000 10757.314 97.329 1548.067 1548.067 5 -60.000 10967.175 104.33
32、9 1271.113 1271.113 6 -75.000 11112.158 109.009 644.146 644.146 7 -90.000 11132.496 110.330 -144.853 -144.853 8 -105.000 13340.278 128.365 -883.912 -883.912 9 -120.000 16136.071 138.884 -1407.468 -1407.46810 -135.000 19120.284 145.429 -1625.253 -1625.25311 -150.000 22280.557 150.044 -1557.401 -1557.40112 -165.000 25724.638 153.629 -1290.413 -1290.41313 -180.000 29550.567 156.506 -928.440 -928.44014 -195.000 33789.984 158.781 -562.443 -562.44315 -210.000 38396.542 160.527 -258.404 -258.40416 -225.000 43263.326 161.841 -55.542 -55.54217