资源描述
正弦函数
复习引入
教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,而且还以每年倾斜1cm的速度继续增加,随时都有倒塌的危险.为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm.
根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?
这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了!
探究新知
(1)问题的引入
教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论,看谁写得最合理,然后由教师总结.
教师总结:这个问题可以归纳为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB(课本图28.1-1).
根据“在直角三角形中,30°角所对的边等于斜边的一半”,即
=
可得AB=2BC=70m,也就是说,需要准备70m长的水管.
教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点.
教师引导学生得出这样的结论:在上面求AB(所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.也是说,只要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变.
教师提出第2个问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试.如课本图28.1-2,在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?
教师要求学生自己计算,得出结论,然后再由教师总结:在Rt△ABC中,∠C=90°由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2=AC2+BC2=2BC2,AB=BC.
因此 =,
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于.
教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?
教师直接告诉学生,这个问题的回答是肯定的,并边板书,边与学生共同探究证明方法.这为问题可以转化为以下数学语言:
任意画Rt△ABC和Rt△A′B′C′(课本图28.1-3),使得∠C=∠C′=90°,∠A=∠A′=a,那么有什么关系.
在课本图28.1-3中,由于∠C=∠C′=90°,∠A=∠A′=a,所以Rt△ABC∽Rt△A′B′C′,,即.
这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.
(二)正弦函数概念的提出
教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定:
如课本图28.1-4,在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA= =.
在课本图28.1-4中,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c.
例如,当∠A=30°时,我们有sinA=sin30°=;
当∠A=45°时,我们有sinA=sin45°=.
(三)正弦函数的简单应用
教师讲解课本第79页例题1.
例1 如课本图28.1-5,在Rt△ABC中,∠C=90°,求sinA和sinB的值.
教师对题目进行分析:求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比.我们已经知道了∠A对边的值,所以解题时应先求斜边的高.
解:如课本图28.5-1(1),在Rt△ABC中,
AB==5.
因此 sinA==,sinB==.
如课本图28.5-1(2),在Rt△ABC中,
sinA==,AC==12.
因此,sinB==.
随堂练习
做课本第79页练习.
课时总结
在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.
在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,
第1课时作业设计
课本练习
做课本第85页习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分)
展开阅读全文