资源描述
襄州区2017—2018学年度九年级适应性考试
数 学 试 题
(本试题共4页,满分120分,考试时间120分钟)
★祝考试顺利★
注意事项:
1、答卷前,考生务必将自己的学校、班级、姓名、考试号填写在试题卷和答题卡上。
2、选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3、非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将序号在答题卡上涂黑作答.
1. -2018的绝对值的相反数是( )
A. B.- C. 2018 D. -2018
2.下列运算正确的是( )
A. 3x-2= x B.(2x2)3 =8x5
C. x·x4 =x5 D.(a+b)2=a2+b2
3.如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b上,若
∠1=55°,则∠2的度数为( )
A.30° B.35° C.45° D.55°
4.中国女排超级联赛2017-2018赛季,上海与天津女排经过七场决战,最终年轻的天津女
排通过自己的拼搏站上了最高领奖台。赛后技术统计中,本赛季超级新星李盈莹共得到804分,创造了女排联赛得分的历史记录。804这个数用科学记数法表示为( )
A. 8.04×102 B.8.04×103 C.0.84×103 D.84.0×102
5.下列几何体中,其三视图都是全等图形的是( )
A. 圆柱 B.圆锥 C. 三棱锥 D.球
6.若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k的取值范围在
数轴上表示正确的是( )
A. B.
C. D.
7.从以下四张图片中随机抽取一张,概率为的事件是( )
A.是轴对称图形 B .是中心对称图形
C.既是轴对称图形又是中心对称图形 D .是轴对称图形但不是中心对称图形
8.如图,AB 是⊙O 的直径,C,D,E 三点在⊙O 上,若∠AED=20°,则∠BCD的度
数为( )
A.100° B.110° C.115° D.120°
9.如图,等腰△ABC的底边BC长为4,面积为16,腰AC的垂直平分线EF分别交AC、AB边于E、F两点,若D为BC边中点,点M为线段EF上一动点,则△CDM周长的最小值为 ( )
A. 6 B. 8 C. 10 D. 12
10.已知抛物线的对称轴为直线,与x轴的一个交点坐标为
(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;②a-b+c<0; ③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b); ⑤若ax2+bx+c=b,则b2-4ac=0.
其中正确的是( )
A.①②③ B.①④⑤ C. ①②④ D.③④⑤
二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.
11.-=________.
12.函数y=中,自变量x的取值范围是________.
13.有一组数据2,a,4,6,7,它们的平均数是5,则这组数据的中位数是________
14.如图,在△ABC中,D是AB上的一点,进行如下操作:①以B为圆心,BD长为半径
作弧交BC于点F;②再分别以D,F为圆心,BD长为半径作弧,两弧恰好相较于AC上的点E处;③连接DE,FE.若AB=6,BC=4,那么AD=________.
15. 如图,以AD为直径的半圆O经过Rt△ABC的斜边A的两个端点,交直角边AC于点
E.B、E是半圆弧的三等分点,若OA=2,则图中阴影部分的面积为________.
16.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相
似时,DP=________.
三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)
17.(本小题满分6分)先化简,再求值:,其中x=+1.
18.(本小题满分6分)为了响应区教体局“打一场提高教育教学质量的攻坚战”,我区实施
“三生课堂”课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了
解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪
调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果
绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,胡老师一共调查了________名同学,其中女生共有________名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,胡老师想从被调查的A类和D类学生分别选取一位同学进行“一帮
一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和
一位女同学的概率.
19.(本小题满分6分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果保留根号)
20. (本小题满分7分)如图,某小区规划在一个长30 m,宽20 m的矩形场地上修建两横竖
通道,横竖通道的宽度比为2∶1,其余部分种植花草,若通道所占面积是整个场地面
积 的.
(1)求横、竖通道的宽各为多少?
(2)若修建1 m2道路需投资750元,种植1 m2花草需投资250元,此次修建需投资多少钱?
21.(本小题满分7分)如图,已知Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将
Rt△AOB绕点O逆时针旋转90°得到Rt△COD,反比例函数y=经过点B.
(1)求反比例函数解析式;
(2)连接BD,若点P 是反比例函数图象上的一点,且OP将
△OBD的周长分成相等的两部分,求点P的坐标.
22.(本小题满分8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的
一点,∠EAB=∠ADB.
(1)求证:EA是⊙O的切线;
(2)若点B是EF的中点,AB=,CB=,求AE的长.
23. (本小题满分10分)“姹紫嫣红苗木种植基地”尝试用单价随天数而变化的销售模式销
售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果
苗,单价在第x天(x为整数)销售的相关信息,如下图表所示:
销售量n(株)
销售单价
m(元/株)
当1≤x≤20时,m =________
当21≤x≤30时,
(1)①请将表中当1≤x≤20时,m与x间关系式补充完整;
②计算第几天该果苗单价为25元/株?
(2)求该基地销售这种果苗30天里每天所获利润y(元)关于x(天)的函数关系式;
(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将这30天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”。试问:基地负责人这次为“精准扶贫”捐赠多少钱?
24.(本小题满分11分)
问题背景:
如图1,△ABC为等边三角形,作AD⊥BC于点D,将∠ABC绕点B顺时针旋转30°后,BA,BC边与射线AD分别交于点E,F,求证:△BEF为等边三角形.
迁移应用:
如图2,△ABC为等边三角形,点P是△ABC外一点,∠BPC=60°,将∠BPC绕点P逆时针旋转60°后,PC边恰好经过点A,探究PA,PB,PC之间存在的数量关系,并证明你的结论;
拓展延伸:
如图3,在菱形ABCD中,∠ABC=60°,将∠ABC绕点B顺时针旋转到如图所在的位置得到∠MBN,F是BM上一点,连接AF,DF,DF交BN于点E,若B,E两点恰好关于直线AF对称.
(1)证明△BEF是等边三角形;
(2)若DE=6,BE=2,求AF的长.
25.(本小题满分11分)如图,抛物线y=-x2+bx+c与x轴分别交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接A,C且AD=5,CD=8,将
Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一
点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平
行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
展开阅读全文