收藏 分销(赏)

数列练习题1.doc

上传人:pc****0 文档编号:9250632 上传时间:2025-03-18 格式:DOC 页数:7 大小:781.50KB
下载 相关 举报
数列练习题1.doc_第1页
第1页 / 共7页
数列练习题1.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
知识清单 1.数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为 的项叫第项(也叫通项)记作; 数列的一般形式:,,,……,,……,简记作 。 (2)通项公式的定义:如果数列的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 说明: ①表示数列,表示数列中的第项,= 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,= =; ③不是每个数列都有通项公式。 (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值……,,…….通常用来代替,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 (5)递推公式定义:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 (6) 数列{}的前项和与通项的关系: 2. 等差数列 1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。用递推公式表示为或。 2、等差数列的通项公式:; 说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。 3、等差中项的概念: 定义:如果,,成等差数列,那么叫做与的等差中项。其中 注:,,成等差数列。 4、等差数列的前和的求和公式:。 5、等差数列的性质: (1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……; (3)在等差数列中,对任意,,,; (4)在等差数列中,若,,,且,则; 说明:设数列是等差数列,且公差为, (Ⅰ)若项数为偶数,设共有项,则①奇偶; ② ; (Ⅱ)若项数为奇数,设共有项,则①偶奇;②。 6、数列最值 (1),时,有最大值;,时,有最小值; (2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。 3. 等比数列 1.等比数列定义 一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即::数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,。(注意:“从第二项起”、“常数”、等比数列的公比和项都不为零) 2.等比数列通项公式为:。 说明:(1)由等比数列的通项公式可以知道:当公比时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若为等比数列,则。 3.等比中项 如果在中间插入一个数,使成等比数列,那么叫做的等比中项(两个符号相同的非零实数,都有两个等比中项)。 4.等比数列前n项和公式 一般地,设等比数列的前n项和是,当时, 或;当q=1时,(错位相减法)。 说明:(1)和各已知三个可求第四个;(2)注意求和公式中是,通项公式中是不要混淆;(3)应用求和公式时,必要时应讨论的情况。 5.等比数列的性质 ①等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且,公比为,则有; ②对于等比数列,若,则,也就是:,如图所示:。 ③若数列是等比数列,是其前n项的和,,那么,,成等比数列。 如下图所示: 4.数列求通项与和 (1)数列前n项和Sn与通项an的关系式:an= 。 (2)求通项常用方法 ①作新数列法。作等差数列与等比数列; ②累差叠加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1; ③归纳、猜想法。 (3)数列前n项和 ①重要公式:1+2+…+n=n(n+1); 12+22+…+n2=n(n+1)(2n+1); 13+23+…+n3=(1+2+…+n)2=n2(n+1)2; ②等差数列中,Sm+n=Sm+Sn+mnd; ③等比数列中,Sm+n=Sn+qnSm=Sm+qmSn; ④裂项求和 将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:、=-、n·n!=(n+1)!-n!、Cn-1r-1=Cnr-Cn-1r、=-等。 ⑤错项相消法 对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。, 其中是等差数列, 是等比数列,记,则,… ⑥并项求和 把数列的某些项放在一起先求和,然后再求Sn。 数列求通项及和的方法多种多样,要视具体情形选用合适方法。 ⑦通项分解法: 2.递推数列 数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递推关系。由递推数列及k个初始值可以确定的一个数列叫做递推数列。如由an+1=2an+1,及a1=1,确定的数列即为递推数列。 递归数列的通项的求法一般说来有以下几种: (1)归纳、猜想、数学归纳法证明。 (2)迭代法。 (3)代换法。包括代数代换,对数代数,三角代数。 (4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。 一、选择题: 1. 已知数列的通项公式为,则3 ( ) A. 不是数列中的项 B. 只是数列中的第2项 C. 只是数列中的第6项 D. 是数列中的第2项或第6项 2. 数列的通项公式为,则数列各项中最小项是 ( ) A. 第4项 B. 第5项 C. 第6项 D. 第7项 3. 首项为的等差数列,从第项开始为正,则公差的取值范围是 ( ) A.  B.  C.  D.  4. 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A.13项 B.12项 C.11项 D.10项 5. 等比数列的前n项和为,且4,2,成等差数列。若=1,则= (A)7 (B)8 (3)15 (4)16 6. 设Sn是等差数列{an}的前n项和,若=,则=( ) A. B. C. D. 7. 在中,,且对任何都有: (Ⅰ), (Ⅱ),(Ⅲ). 给出下列三个结论:①; ②; ③. 其中正确的结论个数是( )个. A. 3 B. 2 C. 1 D. 0 8. 设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A. d<0 B. a7=0 C. S9>S5 D. S6与 S7均为Sn的最大值 二、填空题: 9. 已知是等差数列,,其前5项和,则其公差    . 10. 已知数列{}的前项和,则其通项 ;若它的第项满足,则 . 11.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a+b+c 的值为 . 12.已知 是等比数列,且,若, 则 . 13.已知数列满足:则________;=_________. 三、解答题: 14.已知数列的前项和. (1)求数列的通项公式; (2)求数列数列的前项和. 15.等比数列前三项的和是3,如果把第三项减去9,则这三项又分别是一个等差数列的第1 项,第4项和第7 项,求等比数列前4 项的和. 16.由于美伊战争的影响,据估计,伊拉克将产生60~100 万难民,联合国难民署计划从4 月1 日起为伊难民运送食品.第一天运送1000 t,第二天运送1100 t,以后每天都比前一天多运送100 t,直到达到运送食品的最大量,然后再每天递减100 t,连续运送15 天,总共运送21300 t,求在第几天达到运送食品的最大量. 17.数列是递增的等比数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)若,求证数列是等差数列。 18.设数列{an}的前项的和Sn=(an-1) (n+), (1)求a1,a2 ; (2)求证数列{an}为等比数列。 19.已知数列中,是其前项和,并且, ⑴设数列,求证:数列是等比数列; ⑵设数列,求证:数列是等差数列; ⑶求数列的通项公式及前项和。 根据数列前4项,写出它的通项公式: (1)1,3,5,7……; (2),,,; (3),,,。 数列中,已知, (1)写出,,; (2)是否是数列中的项?若是,是第几项? 公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 A. 18 B. 24 C. 60 D. 90 . 和的等比中项为( ) . 在等比数列()中,若,,则该数列的前10项和为( ) A. B. C. D. 设等差数列的公差不为0,.若是与的等比中项,则(  ) A.2 B.4 C.6 D.8 设{}为公比q>1的等比数列,若和是方程的两根,则__________. 等比数列的各项为正数,且( ) A.12 B.10 C.8 D.2+ 数列1, ,,,,,,,,……的前120项之和为 . 高 某渔业公司今年初用98 万元购进一艘鱼船用于捕捞,第一年需要各种费用12 万元,从第二年起包括维修费在内每年所需费用比上一年增加4 万元,该船每年捕捞总收入50 万元.问捕捞几年后总盈利最大,最大是多少? 已知数列 1,3,6…的各项是由一个等比数列 和一个等差数列 的对应项相加而得到,其中等差数列的首项为0. (1)求 与 的通项公式; (2)求这个数列的前n 项和. 数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求a2,a3,a4的值及数列{an}的通项公式. 对于数列,若存在常数M>0,对任意的,恒有 , 则称数列为数列. (Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由; (Ⅱ)设是数列的前n项和.给出下列两组判断: A组:①数列是B-数列, ②数列不是B-数列; B组:③数列是B-数列, ④数列不是B-数列.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服