资源描述
全等三角形综合题复习
一、自主探究
1、如图,△ABC中,∠BAC=90゜,AB=AC,过直角顶点A作直线AP(AP与AB、AC不重合,且不垂直BC),分别过B、C作BE⊥AP于点E,CF⊥AP于点F.
画出图形后思考:图中是否都含有全等的三角形?请指出来,并找出他们全等的条件?
二、合作交流
2、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E
(1) 试说明: BD=DE+CE.
(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么?
在平面直角坐标系中看基本图形
3、如图1,A(-2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC.
(1)求C点的坐标;
(2)如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE-MN的值.
三、课堂反馈
4、如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,
(1)求C点的坐标;
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值;
(3)如图3,已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m-n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.
四、 小结归纳,谈谈你的收获。
五、课后巩固
5、如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E.求证:BE-CD=AE.
6、如图,∠ACB=90゜,CA=CB,D为BC上一点,BM⊥AD于M,CN⊥AD于N.求证:BM+CN=AN.
7、已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点.
(1)如图1,若点C的横坐标为-4,求点B的坐标;
(2)如图2,BC交x轴于D,AD平分∠BAC,若点C的纵坐标为3,A(5,0),求点D的坐标.
(3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求 S△BEM:S△ABO.
8.已知:在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,且∠ACB=90°,AC=BC.
(1)如图1,当A(0,-2),C(1,0),点B在第四象限时,写出点B的坐标,并说明理由;
(2)如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.
展开阅读全文