资源描述
初四数学图形与证明专题辅导二
1.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为 ( )
A.50° B.55° C.60° D.65°
2.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .
3.请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①的值;②a﹣b的值.
4.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于点D,连接AD.(1)求直径AB的长;(2)求图中阴影部分的面积.(结果保留π)
5.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.
(1)求∠DFG的度数;
(2)设∠BAD=θ,
①当θ为何值时,△DFG为等腰三角形;
②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.
6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.
求证:(1)△ACD≌△BEC;
(2)CF⊥DE.
7.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.
8.如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E。
(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(取3.14)。
9.如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
10.已知BC为半圆O的直径,AB=AF,AC交BF于点M,过A点作AD⊥BC于D,交BF于E,求证:AE=BE.
11.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)、求证:PD是⊙O的切线;(6分)(2)、若∠CAB=120°,AB=2,求BC的值.(6分)
12.如图,在正方形ABCD中,E、F分别是边BC、CD上的点, =,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.
(1)若正方形的边长为4,则EG等于 ;
(2)求证:△ECF∽△FDA;
(3)比较∠EAB与∠EAF的大小.
13.如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
14.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:
小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.
(2)小聪的作法正确吗?请说明理由.
(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
15.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.
(1)求证:BD=CE;
(2)OA平分∠BOE吗?说明理由.
16.如图,点在轴的正半轴上,,,.点从点出发,沿轴向左以每秒1个单位长的速度运动,运动时间为秒.
(1)点的坐标是 ;
(2)当时,求的值;
(3)以点为圆心,为半径的随点的运动而变化,当与四边形的边(或边所在的直线)相切时,求的值.
试卷第5页,总6页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
参考答案
1.D
【解析】
试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
考点:圆的基本性质
2.
【解析】
试题分析:根据扇形的弧长等于圆的周长得出R和r之间的关系.
考点:弧长的计算公式
3.(1)、a2+b2或 (a+b)2﹣2ab;(2)、a2+b2=(a+b)2﹣2ab;(3)、①、;②、5.
【解析】
试题分析:(1)、阴影部分的面积等于两个小正方形的面积之和,同时也等于大正方形的面积减去两个小长方形的面积;(2)、根据面积相等得到等式;(3)、①根据题意求出a+b的值,然后将所求的分式进行通分得出答案;②根据已知求出的值,然后根据a>b得出答案.
试题解析:(1)、两个阴影图形的面积和可表示为:a2+b2或 (a+b)2﹣2ab;
(2)、a2+b2=(a+b)2﹣2ab;
(3)、∵a,b(a>b)满足a2+b2=53,ab=14,
∴①(a+b)2=a2+b2+2ab
=53+2×14=81 ∴a+b=±9, 又∵a>0,b>0,∴a+b=9.∴==
②∵=53-2×14=25 又∵a>b>0,∴a﹣b=5,
考点:完全平方公式的应用
4.(1)、4;(2)、3π-6.
【解析】
试题分析:(1)、根据直径得出∠ACB=90°,设AC=x,则AB=2x,然后根据Rt△ACB的勾股定理求出x的值,从而得出直径;(2)、连接OD,然后根据三角形的面积计算法则和扇形的计算法则分别求出扇形AOD和△AOD的面积,从而得出阴影部分的面积.
试题解析:(1)∵AB是⊙O的直径, ∴∠ACB=90°,∵∠B=30°,∴AB=2AC,设AC的长为x,
则AB=2x,在Rt△ACB中,,∴ 解得x=,∴AB=.
(2)连接OD.∵CD平分∠ACB,∴∠ACD=45°, ∴∠AOD=90°,
AO=AB=, ∴S△AOD =
S 扇AOD = ∴S阴影 =
考点:(1)、圆的基本性质;(2)、扇形的面积计算.
5.(1)80°;(2)①10°,25°或40°;②5°或45°.
【解析】
试题分析:(1)由轴对称可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在证明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;
(2)①当GD=GF时,就可以得出∠GDF═80°,根据∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出结论;当DF=GF时,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,当DF=DG时,∠GDF=20°,就有40°+20°+40°+2θ=180°,从而求出结论;
②由已知条件可以得出∠DFG=80°,当∠GDF=90°时,就有40°+90°+40°+2θ=180°就可以求出结论,当∠DGF=90°时,就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出结论.
试题解析:(1)∵AB=AC,∠BAC=100°,
∴∠B=∠C=40°.
∵△ABD和△AFD关于直线AD对称,
∴△ADB≌△ADF,
∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,
∴AF=AC.
∵AG平分∠FAC,
∴∠FAG=∠CAG.
在△AGF和△AGC中,
AF=AC,∠FAG=∠CAG,AG=AG,
∴△AGF≌△AGC(SAS),
∴∠AFG=∠C.
∵∠DFG=∠AFD+∠AFG,
∴∠DFG=∠B+∠C=40°+40°=80°.
答:∠DFG的度数为80°;
(2)①当GD=GF时,
∴∠GDF=∠GFD=80°.
∵∠ADG=40°+θ,
∴40°+80°+40°+θ+θ=180°,
∴θ=10°.
当DF=GF时,
∴∠FDG=∠FGD.
∵∠DFG=80°,
∴∠FDG=∠FGD=50°.
∴40°+50°+40°+2θ=180°,
∴θ=25°.
当DF=DG时,
∴∠DFG=∠DGF=80°,
∴∠GDF=20°,
∴40°+20°+40°+2θ=180°,
∴θ=40°.
∴当θ=10°,25°或40°时,△DFG为等腰三角形;
②当∠GDF=90°时,
∵∠DFG=80°,
∴40°+90°+40°+2θ=180°,
∴θ=5°.
当∠DGF=90°时,
∵∠DFG=80°,
∴∠GDF=10°,
∴40°+10°+40°+2θ=180°,
∴θ=45°
∴当θ=5°或45°时,△DFG为直角三角形.
考点:全等三角形的判定与性质;等腰三角形的判定;轴对称的性质.
6.(1)证明详见解析;(2)证明详见解析.
【解析】
试题分析:(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.
(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.
试题解析:(1)∵AD∥BE,
∴∠A=∠B,
在△ACD和△BEC中,
AD=BC,∠A=∠B,AC=BE,
∴△ACD≌△BEC(SAS);
(2)∵△ACD≌△BEC,
∴CD=CE,
又∵CF平分∠DCE,
∴CF⊥DE.
考点:全等三角形的判定;三角形的角平分线、中线和高;全等三角形的性质;等腰三角形的性质.
7.见解析
【解析】
试题分析:本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,利用相似三角形的性质构建方程,最后一个问题利用反证法证明解题.
(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.
(2)由△QTM∽△BCD,得列出方程即可解决.
(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.
②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.
(1)解:如图1中,∵四边形ABCD是矩形,
∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,
∴ ,
∵PQ⊥BD,
∴∠BPQ=90°=∠C,
∵∠PBQ=∠DBC,
∴△PBQ∽△CBD,
∴,
∴,
∴PQ=3t,BQ=5t,
∵DQ平分∠BDC,QP⊥DB,QC⊥DC,
∴QP=QC,
∴3t=8-5t,
∴t=1,
故答案为:1.
(2)解:如图2中,作MT⊥BC于T.
∵MC=MQ,MT⊥CQ,
∴TC=TQ,
由(1)可知TQ=(8-5t),QM=3t,
∵MQ∥BD,
∴∠MQT=∠DBC,
∵∠MTQ=∠BCD=90°,
∴△QTM∽△BCD,
∴,
∴ ,
∴t=(s),
∴t=s时,△CMQ是以CQ为底的等腰三角形.
(3)①证明:如图2中,由此QM交CD于E,
∵EQ∥BD,
∴,
∴EC=(8-5t),ED=DC-EC=6-(8-5t)=t,
∵DO=3t,
∴DE-DO=t-3t=t>0,
∴点O在直线QM左侧.
②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.
∵EC=(8-5t),DO=3t,
∴OE=6-3t-(8-5t)=t,
∵OH⊥MQ,
∴∠OHE=90°,
∵∠HEO=∠CEQ,
∴∠HOE=∠CQE=∠CBD,
∵∠OHE=∠C=90°,
∴△OHE∽△BCD,
∴,
∴,
∴t=.
∴t=s时,⊙O与直线QM相切.
连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,
在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,
∴∠OFH=∠FOH=45°,
∴OH=FH= ,FO=FM=,
∴MH=(+1),
由得到HE=,
由得到EQ= ,
∴MH=MQ-HE-EQ=4--=,
∴(+1)≠,矛盾,
∴假设不成立.
∴直线PM与⊙O不相切.
考点:圆的综合题.
8.(1) AC=3,BC=6或AC=6,BC=3;(2)5.14
【解析】
试题分析:(1)连接OD、OE,得出四边形CDOE是正方形,推出CE=CD=OD=OE=2,∠DOE=90°,设AD=x,求出BE=5-x,证△OEB∽△ADO,得出,代入求出x即可;
(2)利用AC=3,AD=3-1=2,BC=6,结合阴影部分的面积S=S△ACB-S△ADB-(S正方形CDOE-S扇形ODE)代入求出即可.
试题解析:(1)连接OD、OE,
∵⊙O切BC于E,切AC于D,∠C=90°,
∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,
∵OE=OD=2,
∴四边形CDOE是正方形,
∴CE=CD=OD=OE=2,∠DOE=90°,
∵∠OEB=∠C=90°,
设AD=x,
∵AC+BC=9,
∴BE=9-2-2-x=5-x,
∴OE∥AC,
∴∠EOB=∠A,
∴△OEB∽△ADO,
∴
∴,
x=1或4,
∴AC=3,BC=6或AC=6,BC=3;
(2)∵AC=3,AD=3-2=1,BC=6,
∴阴影部分的面积S=S△ACB-S△ADB-(S正方形CDOE-S扇形ODE)
=×3×6-×1×6-(2×2-)
=9-3-(4-π)
=2+π
≈5.14.
考点:1.切线的性质;2.扇形面积的计算.
9.见解析
【解析】
试题分析: (1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;
(2)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得;
(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.
②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE•cos60°列式得.
③∠EFD=90°时,此种情况不存在.
(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF.
(2)解:能.理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四边形AEFD为平行四边形.
∵AB=BC•tan30°==5,
∴AC=2AB=10.
∴AD=AC﹣DC=10﹣2t.
若使▱AEFD为菱形,则需AE=AD,
即t=10﹣2t,t= .
即当t=时,四边形AEFD为菱形.
(3)解:①∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠ADE=∠C=30°,
∴AD=2AE.
即10﹣2t=2t,t= .
②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=90°﹣∠C=60°,
∴AD=AE•cos60°.
即10﹣2t= t,t=4.
③∠EFD=90°时,此种情况不存在.
综上所述,当t= 秒或4秒时,△DEF为直角三角形.
考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.
10.证明过程见解析
【解析】
试题分析:首先根据AB=AF,得到弧相等,根据同弧所对的圆周角相等得到∠ABE=∠ACB,然后根据垂直的定义得到∠ACB=∠BAD,根据等式的性质得出∠ABE=∠BAD,从而说明AE=BE.
试题解析:∵AB=AF ∴弧AB=弧AF ∴∠ABE=∠ACB ∵BC为圆O的直径 ∴∠BAC=90°
又∵AD⊥BC ∴∠ACB+∠DAC=∠BAD+∠DAC=90° ∴∠ACB=∠BAD ∴∠ABE=∠BAD ∴AE=BE.
考点:(1)、同弧所对的圆周角相等;(2)、等腰三角形的判定.
11.(1)、证明过程见解析;(2)、2
【解析】
试题分析:(1)、根据AB=AC得到∠B=∠C,根据OP=OB得出∠B=∠OPB,从而说明∠C=∠OPB,可以得出OP∥AC,根据PD⊥AC得出∠OPD=90°,即为切线;(2)、连接AP,根据直径得出∠APB=90°,根据∠BAC的度数求出∠C和∠B的度数,根据Rt△APB求出AP和BP的长度,然后得出BC的长度.
试题解析:(1)、连接OP. ∵AB=AC ∴∠C=∠B ∵OP=OB ∴∠OPB=∠B ∴∠C=∠OPB
∴OP∥AC ∴∠OPD=∠PDC ∵PD⊥AC于点D ∴∠PDC=90° ∴∠OPD=90°,即:OP⊥PD
∵OP为⊙O半径 ∴PD是O切线
(2)、连接AP. ∵AB为⊙O直径 ∴∠APB=90°,即:AP⊥BC
∵AB=AC,∠BAC=120° ∴∠C=∠B=30°,BP=PC=BC
∵在Rt△APB中,∠B=30° ∴AP=AB=1
∴BP= ∴BC=2BP=2
考点:(1)、切线的判定;(2)、勾股定理的应用.
12.(1)3;(2)证明参见解析;(3)∠EAF<∠EAB.
【解析】
试题分析:(1)先根据正方形边长得CF=2,由平行相似得:△FCE∽△GBE,则,代入求得BG=6,根据勾股定理得:EG=3;(2)根据已知边的长度分别求=, ==,则=,再由正方形性质得:∠C=∠D=90°,则△ECF∽△FDA;(3)先根据(2)中的△ECF∽△FDA,得∠CFE=∠DAF,==,证明∠EFA=90°,分别计算∠EAB与∠EAF的正切值,根据两锐角正切大的角大,得出结论.
试题解析:(1)∵四边形ABCD是正方形,∴AB=CD=BC=4,∠ABC=90°,DC∥AB,∵CF=DF,∴CF=CD=2,
∵DC∥AG,∴△FCE∽△GBE,∴,∵=,∴=,BE=BC=×4=3,∴=,∴BG=6,在Rt△BEG中,EG===3;故答案为:3;(2)∵四边形ABCD是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴=, ==,∴=,∴△ECF∽△FDA;(3)∵△ECF∽△FDA,∴∠CFE=∠DAF,==,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan∠EAF==,∵=,∴tan∠EAB==,∵<,∴∠EAF<∠EAB.
考点:相似形综合题.
13.(1)5;(2)6或;(3).
【解析】
试题分析:(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
(3)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.
试题解析:(1)∵矩形ABCD中,AB=9,AD=4,
∴CD=AB=9,∠D=90°,
∴DE=9﹣6=3,
∴AE==5;
(2)①若∠EPA=90°,t=6;
②若∠PEA=90°,,
解得t=.
综上所述,当t=6或t=时,△PAE为直角三角形;
(3)假设存在.
∵EA平分∠PED,
∴∠PEA=∠DEA.
∵CD∥AB,
∴∠DEA=∠EAP,
∴∠PEA=∠EAP,
∴PE=PA,
∴,
解得t=.
∴满足条件的t存在,此时t=.
考点:四边形综合题.
14.(1)SSS;(2)、理由见解析;(3)、答案见解析
【解析】
试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.
试题解析:(1)、SSS
(2)、小聪的作法正确
理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中 ∵OP=OP ,OM=ON
∴Rt△OMP≌Rt△ONP(HL) ∴∠MOP=∠NOP ∴OP平分∠AOB
(3)、如图所示.
步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.
③作射线OQ.则OQ为∠AOB的平分线.
考点:角平分线的做法.
15.(1)、证明过程见解析;(2)、证明过程见解析
【解析】
试题分析:(1)、根据等边三角形的性质得到AB=AC,AD=AE,∠BAC=∠DAE=60°,则易得∠BAD=∠CAE,根据“SAS”有△BAD≌△CAE,利用全等三角形的性质即可得到结论;(2)、作AF⊥BD,AG⊥CE,垂足分别是F、G,由△BAD≌△CAE,根据全等三角形的性质有AF=AG,再根据角平分线的判定定理即可得到OA平分∠BOE.
试题解析:(1)、∵△ABC和△ADE都是等边三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE, 在△BAD和△CAE中, ,
∴△BAD≌△CAE(SAS), ∴BD=CE;
(2)、OA平分∠BOE.理由如下: 作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,
∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高, ∴AF=AG, ∴OA平分∠BOE.
考点:(1)、等边三角形的性质;(2)、全等三角形的判定与性质;(3)、角平分线的性质.
16.(1)、(0,6);(2)、或;(3)、1或7或
【解析】
试题分析:(1)、根据题意得出点C的坐标;(2)、本题分两种情况进行计算,当点P在点B右侧,根据题意得出∠PCO=30°,则OP=t-7,PC=2(t-7),根据Rt△POC的勾股定理得出t的值,当点P在点B左侧,用同样的方法得出t的值;(3)、与四边形相切时,分三种情况进行讨论,即与BC相切,与CD相切,与AD相切.
试题解析:(1)、点C的坐标为(0,6);
(2)、当点在点右侧时,如图2.
当,得.OP=t-7,则PC=2(t-7),在Rt△POC中,
故,此时(舍去负值)
当点在点左侧时,如图3,由,
得,PC=2CO=12,故.
此时.的值为或;
(3)、由题意知,若与四边形的边相切,有以下三种情况:
①当与相切于点时,有,从而
得到. 此时.
②当与相切于点时,有,即点与点重合,此时.
③当与相切时,由题意,,
点为切点,如图4..
于是.解出.
的值为1或7或.
考点:圆的性质
答案第13页,总14页
展开阅读全文