资源描述
三角形重心是三角形三边中线的交点。当几何体为匀质物体时,重心与形心重合。
中文名
三角形重心
定 义
是三角形三边中线的交点
性质比例
重心到对边中点的距离之比为2:1
应用领域
几何
目录
1性质证明
2顺口溜
3向量关系
1性质证明编辑
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
证明一
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。
求证:EG=1/2CG
证明:过E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行线分线段成比例定理)
又∵ AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
证明二
2、重心和三角形3个顶点组成的3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知,OA'=1/3AA',OB'=1/3BB',OC'=1/3CC',过O,A分别作a边上高OH',AH,可知OH'=1/3AH 则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC;同理可证S△AOC=1/3S△ABC,S△AOB=1/3S△ABC,所以,S△BOC=S△AOC=S△AOB
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
证明方法:
设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y) 则该点到三顶点距离平方和为:
(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2+(x3-x)2+(y3-y)2
=3x2-2x(x1+x2+x3)+3y2-2y(y1+y2+y3)+x12+x22+x32+y12+y22+y32
=3[x-1/3*(x1+x2+x3)]2+3[y-1/3*(y1+y2+y3)]2+x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2
显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时
上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2
最终得出结论。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,
即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];
空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)
2顺口溜编辑
三条中线必相交,交点命名为“重心”
重心分割中线段,线段之比二比一;
3向量关系编辑
O是重心,向量OA+向量OB+向量OC=零向量。
词条标签:
数学 , 理学
三角形重心图册
当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形只有五种心
重心:三条中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2(也称中心);
垂心:三角形三条高的交点;
内心:三条角平分线的交点,是三角形的内切圆的圆心的简称; 到三边距离相等
外心:三条中垂线的交点,是三角形的外接圆的圆心的简称;到三顶点距离相等
旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.
展开阅读全文