收藏 分销(赏)

渐开线方程式.doc

上传人:s4****5z 文档编号:9006116 上传时间:2025-03-11 格式:DOC 页数:3 大小:82.50KB 下载积分:10 金币
下载 相关 举报
渐开线方程式.doc_第1页
第1页 / 共3页
渐开线方程式.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
40*(t*sin(t)+cos(t)) 30*(sin(t)-t*cos(t)) 渐开线极坐标方程 渐开线参数方程 x=rb*cos(θ)+rb*rad(θ)*sin(θ) y=rb*sin(θ)—rb*rad(θ)*cos(θ) 渐开线及其形成(development of involute) 直线BK在一圆上作纯滚动,其上K点的轨迹就是渐开线(involute)。其中, AK---渐开线(involute) 圆---基圆(base circle) rb---基圆半径 BK---渐开线发生线(generating line) θk---渐开线上K点的展角 rK---渐开线上K点的向径 αK---渐开线K点的压力角 动画演示 渐开线的性质(properties of involute) 1)发生线沿基圆滚过的长度等于基圆上被滚过的弧长,即:; 2)当发生线沿基圆作纯滚动时,切点B为其速度瞬心, 因此KB必垂直于渐开线上K点的切线,即发生线为渐开线在K点的法线,即: 渐开线上任一点的法线恒与基圆相切; 3)发生线与基圆的切点B也是渐开线在K点处的曲率中心,即        K点离基圆愈远(rK愈大),愈大,K点在基圆上时(rK=0时), 4)渐开线的形状取决于基圆的大小,即由不同大小的基圆所形成的渐开线,在相等展角处的曲率半径的大小随基圆半径rb的增大而增大,若,则,渐开线AK变成直线.故齿条的渐开线齿廓曲线为直线。 5)基圆以内无渐开线 渐开线方程式(involute equation)----渐开线方程式多用极坐标形式表示: 设OA为极坐标轴(O为原点),则以压力角表示的K点的极坐标(展角,向径)方程式为: 由图可知: 所以,渐开线的极坐标方程为:   其中很常用,可用来求解渐开线齿廓上任一点的压力角. 渐开线函数(involute function) 渐开线函数指的是展角与压力角的函数关系式,工程上以表示该函数,即   
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服