资源描述
Experiment 4 Transient Process of RC Circuit
I Objectives
1. To Learn to use oscilloscope.
2. To study the square wave responses of first-order circuits.
II Apparatus and Equipments
Name
Spec.
Number
1
Two-channel oscilloscope
XJ4328
1
2
Function generator
EE1641D
1
3
Elements
R=510Ω, 1 kΩ, 2 kΩ, 3 kΩ, 10 kΩ
C=0.1μf, 0.3μf, 0.4μf, 1μf,3 μf, 10μf
1
III Preperations
1. The rectangular pulse responses of a RC circuit
Fig.4-1 and Fig.4-2 are the rectangular pulses and a RC circuit respectively.
Fig.4-1 Rectangular pulses Fig.4-2 RC circuit
Supply the signal of rectangular pulses to the RC circuit, we get the responses shown in Fig.4-3 if the initial value of uC is zero. Obviously, RC circuit charges and discharges continuously. It’s the essence of pulse responses of RC circuit.
2. Applications of a RC circuit
(1) Differential circuit in Fig.4-4——when the parameters R and C make the time constant τ<<tp (the width of rectangular pulses), we can get the impulse response μR shown in Fig.4-5.
(2) Integral circuit in Fig.4-6——when the parameters R and C make the time constant of the circuitτ>>tp, we can get the response uC shown in Fig.4-7. The output voltage uC is approximately the integration of the input voltage ui.
Fig.4-3
Fig.4-4 RC differential circuit Fig.4-5 Response of the circuit Fig.4-4
Fig.4-6 RC integral circuit Fig.4-7 Response of the circuit Fig.4-6
IV Lab Work
1. Measure the peak values and periods of sinusoids produced by a function generator.
2. Measure the magnitude, periods, and pulse width of square waves produced by a function generator.
3. Measure the phase difference of two sinusoids.
Supply the sinusoid ui (f=1kHz, Up-p=1V) to the circuit Fig.4-4, observe the voltage ui and uR with oscilloscope, measure the phase difference of them, and compare the magnitudes of them. The parameters are listed as follow:
(1) R=1kΩ, C=0.1μf;
(2) R=1kΩ, C=0.2μf;
(3) R=2kΩ, C=0.1μf;
(4) R=1kΩ, C=10μf.
4. Study the transient process of a RC circuit
Supply a square-wave signal (amplitude 4V, periods 4ms, and pulse width tw about 4ms) to the circuit Fig.4-6.
(1) Observe the waveforms of uR, uC, and ui in the caseτ=RC<;
(2) Observe the waveforms of ui and uC simultaneously in the caseτ=RC=(;
(3) Observe the waveforms of ui and uC simultaneously in the caseτ=RC>;
(4) Observe the waveforms of ui, uC, and uR simultaneously in the caseτ=RC>;
V Preparations
1. Reading and understanding the specification of two-channel oscilloscope XJ4328;
2. Preparing the circuit parameters for lab work 4.
VI Discussions
1. Give the data measured and draw the waveforms observed;
2. Analyze the effects of the circuit parameters on the square-wave responses in first-order circuits.
实验四 RC电路的过渡过程
一、实验目的
1.学习使用XJ4328示波器显示波形和测量幅度、频率、相位的方法。
2.研究一阶电路的方波响应。
二、实验仪器设备
名 称
规格,型号
数量
1
二踪示波器
XJ4328
1台
2
函数发生器
EE1641D型
1台
3
实验元件
R=510Ω, 1 kΩ, 2 kΩ, 3 kΩ, 10 kΩ
C=0.1μf, 0.3μf, 0.4μf, 1μf,3 μf, 10μf
1块
三、实验原理
RC串联电路是电子线路中经常用到的线路,对一个工程技术人员,熟悉它的性能是必要的。
1.RC电路的矩形脉冲响应
矩形脉冲序列波形如图4-1所示。
图4-1 矩阵脉冲序列波形图 图4-2 RC串联电路图
若将此矩形脉冲序列信号加在电容电压的初始值uC(0)=0的RC电路上,如图4-2所示,其响应曲线如图4-3所示。
显然,电路的脉冲响应实质是RC电路不断充放电的过程。
2.RC电路的应用
(1) RC微分电路
如图4-4所示的电路,选择适当的电路参数,使电路的时间常数τ<<tp (矩形脉冲宽度),于是电阻两端电压u0为正负交替的尖脉冲,如图4-5所示。
图4-3
图4-4 RC微分电路 图4-5 微分电路的输入电压和输出电压波形
(2) RC积分电路
如果将RC电路的电容两端作为输出端,如图4-6所示,在电路参数满足τ>>tp时条件下,电路的输出电压近似地正比于输入电压对时间的积分。输入电压为矩形脉冲时,输出电压波形为三角波,如图4-7所示。
uc
图4-6 RC积分电路 图4-7 RC积分电路的输入输出电压波形
四、实验任务
1.利用示波器测量函数发生器输出正弦波的幅值和周期(自己调节)。
2.利用示波器测量函数发生器输出方波的幅值、周期和脉冲宽度。
3.利用示波器测量相位差。
按图4-4接线,AB间接函数发生器输出的正弦信号取f=1kHz, Up-p=1V。在示波器屏幕上同时观察ui和uR的波形,测量两个电压的相位差,并注意比较两个电压的幅值大小。电路参数分别为:
(1) R=1 kΩ, C=0.1μf;
(2) R=1 kΩ, C=0.2μf;
(3) R=2 kΩ, C=0.1μf;
(4) R=1 kΩ, C=10μf。
4.利用示波器研究RC电路的过渡过程
按图4-6接线,AB间接函数信号发生器输出的方波信号,方波幅值为4伏,周期为4毫秒,脉冲宽度tw约为2毫秒。
(1) 选用电路参数使τ=RC<,分别观察ui、uR、uC的波形。
(2) 选用电路参数使τ=RC=(,同时观察ui和uC的波形。
(3) 选用电路参数使τ=RC>,同时观察ui和uC的波形。
(4) 选用电路参数使τ=RC>,同时观察ui、uR、uC的波形。
五、预习要求
1.阅读XJ4328型二踪示波器简介
*2.观看“电子示波器原理”电视录像片
3.拟定任务4中的电路参数
六、总结讨论
1.在坐标纸上画出被观察的波形,算出被测数据。
2.分析一阶电路中电路参数对方波响应的影响。
展开阅读全文