资源描述
高数易错点总结
1. 在什么情况下导函数在x=a处的右极限等于函数在x=a处的右导数?
答:当函数在x=a处右连续的情况下结论成立,用洛必达罗比达法则,根据导数的定义分子分母分别求导,就可以得到正确的结论,在一个分段点(该点是函数的第一类间断点,右间断)两边分别为斜率相同但截距不同的一次函数就是一个反例,如y=2x+1(x<=1),y=2x+3(x>1),虽然导函数在x=1处的左右极限都存在且相等但函数在x=1处的右导数不存在。对于导函数在x=a处的左极限等于函数在x=a处的左导数也有类似结论。
2 对于E(|X-Y|)与E(X-Y)在X-Y>0的情况下是否相同?
答:对于离散型随机变量成立,对于连续型随机变量最好不要下这样的结论,因为后者在负无穷到正无穷做二重积分时要用到积分区间的可加性,把区间分成y=x的上方与下方两部分进行积分运算,被积函数在y=x的上方为f(x,y)*(y-x),下方为f(x,y)* (x-y).同理根据方差公式D(X)=E(X的平方)-[E(X)]的平方,所以D(|X-Y|)与D(X-Y)在X-Y>0易知对于方差也是同样道理的。且对于方差在X-Y小于0的情况下也有类似结论。对于Z=max(X,Y) 求E(Z),也可用此方法显得简便,被积函数在y=x的上方为f(x,y)* x,下方为f(x,y)* y。对Z=min(X,Y)同理可推。避免了先求FZ(z)= Fx(z)* FY(z)和FZ(z)=1-(1- Fx(z))* (1- FY(z)),再对z求导的麻烦。
3 为什么有第一类间断点的函数不存在原函数?并举一个有第二类间断点的且存在原函数的函数。
答:用反证法,假设f(x)存在原函数F(x),因为F(x)处处连续,所以F(x)在x=a处的左极限=F(x)在x=a处的右极限= F(x)在间断点x=a处的函数值,又因为F(x)处处可导,所以F(x)在x=a处的左导数=F(x) 在x=a处的右导数= F(x)的导函数在x=a处的函数值,换句话说就是f(x)在x=a处的左极限= f(x)在x=a的右极限= f(x)在间断点x=a处的函数值,(因为F(x)连续,所以F(x) 在x=a处的左右导数等于它在x=a处导函数的左右极限),这样f(x)在x=a处连续,与题设条件矛盾,所以原命题正确。
考察分段函数f(x)=2x*sin(1/x)-cos(1/x) x不等于0, f(x)=0当x=0时,当x趋于0时f(x)的左右极限都不存在,所以x=0是f(x)的第二类间断点。但f(x)有原函数F(x)=x平方* sin(1/x) x不等于0,F(x)= 0当x=0时。
4 对于被积函数或微分符号内有两个变量x与y的定积分该如何积分?
答:这是要把思路拓宽,想一想一张平面除四个象限,两根轴以外,还有什么。对于最典型的一次函数有斜率与截距两个要素,这时就可以设参数t=y-ax(截距式参数)t=y除x (斜率式参数),根据题设的已知等式或方程组或y与x的函数关系确定y与x的取值范围,从而就可以算出t=y-ax或t=y除x的取值范围(a为一次函数的斜率)。从而确定了积分的上下限,再把前面两个式子带入到被积函数或微分符号内,就化为一个简单的关于t的定积分。
从本题当中可以看出定积分的表达形式有三种,一是我们书本里经常看到的直角坐标,二是极坐标即r与角度(逆时针方向增大)的关系,第三种就是参数方程。其中极坐标就是参数方程的特例。
5 关于复合函数连续与可导的问题
答:对于y=g(f(x)),只要u=f(x)在x=a处极限存在,y=g(u)在u=b {b=f(a)}处连续,则极限符号可以提到括号里面去,如果y=g(u)在u=b {b=f(a)}处可导,u=f(x)在x=a处不可导,则y=g(f(x)) )在x=a处可以可导也可以不可导。如果y=g(u)在u=b{b=f(a)}处不可导,u=f(x)在x=a处不可导,则y=g(f(x)) )在x=a处可以可导。比如内函数为u=f(x)=x+(x的绝对值),外函数为y=g(u)=u+(u的绝对值),虽然u=f(x)在x=0处不可导,y=g(u)在u=0处不可导,但是y=g(f(x))在x=0处可导。
6 可积一定有界,但反过来不一定成立,举个反例
答:狄利克雷函数,因为此函数当x趋于有理数时极限等于1,趋于无理数时极限等于0.在一个闭区域内有无穷多个有理数和无理数,所以该函数有无穷多个第一类间断点,与可积的条件有界连续或有有限个第一类间断点矛盾。
7 如果一个函数在一个点x0处可导,能不能推出它在x0的某一领域内可导?
答:不能,反例,f(x)=x平方,当x为无理数。 f(x)=0,当x为有理数,先考察在x=0处的可导性。当函数从无理数趋于0时,导数为x平方除x,为x。又x=0,所以导数为0。当函数从有理数趋于0时,导数为0除x,为0。所以函数在0处可导。当x不为0处(设为x0处)的导数,分两种情况,一是在有理数处的导数,当函数从无理数趋于x0时,导数为x平方除x,为x,当函数从有理数趋于x0时,导数为0除x,为0,不相等所以不可导。二是在无理数处的导数,当函数从无理数趋于x0时,导数为0除x,为0,当函数从有理数趋于x0时,导数为负x平方除x,为负x,不相等所以不可导。
8 如何求两条异面直线的公垂线?
答:思路一:根据给出的两条空间直线L1与L2的方程(可以是一般方程或是对称方程),求出它们的方向向量S1={m1,n1,p1}, S2={m2,n2,p2}.然后根据公式求出这两个向量的垂直向量S3={m3,n3,p3},然后取包含S3的第一个平面上的一点(x,y,z)(任意一个未知的代数点)与L1上一已知点{a1,b1,c1},做向量S4={x-a1,y-b1,z-c1},根据S4, S1, S3三向量共面,混合积等于0,列出一个行列式,把它化为一个平面的一般方程。同理取包含S3第二个平面上的一点(x,y,z)(任意一个未知的代数点)与L2上一已知点{a2,b2,c2},做向量S5={x-a2,y-b2,z-c2},根据S5, S2, S3三向量共面,混合积等于0,列出一个行列式,把它化为一个平面的一般方程。联立这两个平面的一般方程,就得到了公垂线的一般方程。
思路二:设两个参数t与m, t为起始点的参数,m为步长参数,把L1先化为对称式方程,并设它等于t,然后写出x=x(t),y=y(t),z=z(t),再在L1上取一起始点A{ x(t), y(t), z(t)}
然后根据公式求出这两个向量的垂直向量S3={a,b,c},(a,b,c是三个具体的数)沿此向量取一步长m,,则A点沿公垂线平移的向量改变量为S={am,bm,cm},则终点为
B{ x(t) -am, y(t) -bm, z(t)-cm},把它带入到L2的方程里去,便可求出参数t与m的值,这样便可求出公垂线的方程。
9 注意第一类广义积分与上限或下限为0的第二类广义积分审敛法的区别
分析:前者是无穷限积分,把函数与x分之一的p次方做比较,当p>1时,由审敛公式极限等于0或常数时,积分收敛。当p<=1时, 由审敛公式极限等于常数或无穷大时,积分发散。后者是在x=a处的被积函数为无界的积分,把函数与(x-a)分之一的p次方做比较,当p<1时, 由审敛公式极限等于常数或0时,积分收敛。当p>=1时,由审敛公式极限等于无穷大或常数时,积分发散。需要注意的是此时a=0,(x-a)分之一的p次方变成了x分之一的p次方,所以此处很容易出错,最重要的是要看一下被积函数在x=0处是否有界,有界属于前者,无界属于后者。审敛时p的取值范围正好相反。
10 证明任何一个n阶排列都可以经过有限次对换变成自然排序,且变换次数与这个n阶排列具有相同的奇偶性。
证明:根据数学归纳法,设一个排列为k阶排列,先证明任何一个n阶排列都可以经过有限次对换变成自然排列。当k=1时,结论显然成立。假设当k=n-1时结论也成立,即j1j2到
Jn-1可以变成123到n-1。则对于k=n,当jn=n时,结论显然成立。当jn不等于n时,则第一步先把jk(k为1到n-1的任意一个整数)它的值为n,与jn做对换,接下来的对换方法如同jn=n时,因为一个n阶排列可变为自然排列,所以自然排列也可以变为这个n阶排列,且变换次数相同,又因为自然排列是偶排列。且一个偶排列经过奇数次对换变成奇排列,经过偶数次对换变成偶排列,所以命题得证。
11 隐函数求导的三大法则
一 等式两边对x求导
二 利用隐函数求导公式
三 等式两边取全微分
12 关于二重积分的保向性的理解
分析:因为积分区间相同,被积函数有大小比较关系,所以把两个积分相减,得到的式子大于零,就意味这两个曲顶柱体相减得到的一个上下面都是曲面的柱体,它在xoy面上方大于零,在xoy面下方小于零。保向性在定积分与三重积分也成立。对于不等式两边同时取极限也成立。
13 如果lim(n趋于无穷大)Xn*Yn=0,能不能说lim(n趋于无穷大)Xn=0,或lim(n趋于无穷大) Yn=0?
答:不能,设数列{Xn}为0,1,0,2,0,3,0,4一直下去,其通项为1加上1的n次方的和除以二再乘以n。设数列{Yn}为1,0,2,0,3,0,4,0一直下去,其通项为1加上1的n-1次方的和除以二再乘以n。这就是一个反例。因为一个数列发散它可以有收敛的子数列。
14 关于幂级数逐项求导与逐项积分收敛区间不变,但收敛域的变化有什么规律?
答:设幂级数逐项求导的收敛域为I1,原幂级数收敛域为I2,幂级数逐项积分的收敛域为I3,则I1< I2< I3,即幂级数逐项求导在端点(此处端点可分单侧和双侧两种,各针对这两种情况)处收敛,则原幂级数和幂级数逐项积分在端点处一定收敛,幂级数逐项积分在端点处发散,那么原幂级数和幂级数逐项求导在端点处一定发散。幂级数逐项积分在端点处收敛,那么原幂级数和幂级数逐项求导在端点处可能收敛也可能发散,幂级数逐项求导在端点处发散,那么原幂级数和幂级数逐项积分在端点处可能收敛也可能发散。
15 “泰勒级数”与“泰勒展开式”是一个概念吗?
答:不是,前者是要满足三个条件的后者,一是级数在展开点x0的某个领域内的任意一点的和的函数值S(x)必须等于这个函数f(x)在该点处的函数值,二是余项的极限要为零,三是级数在展开点的某个领域内的任意一点必须收敛。
16 注意div rot grad 的对象与结果
分析:div是指散度,是把一个场A的分量P Q R分别对x,y,z求偏导,然后把三个结果相加。应用主要是高斯公式,即先对空间一个场A,求出divA对它在作用区域(注意该区域一定是体积封闭的)内的三重积分等于一个曲面微元点乘该点处的单位法向量,即把该点处的曲面微元向量化,变为(dydz, dxdz,dxdy),然后把场A的向量(P Q R)与(dydz, dxdz,dxdy)做点乘所得的结果再做第二类曲面积分,结果表示通量,是一个数。Div的对象是一个三维向量,divA的结果是一个三元函数,代入具体某一点时表一个数。
Rot表示旋度,对象是一个三维向量,把场A的向量(P Q R),rotA为向量(R对y求偏导-Q对z求偏导,P对z求偏导- R对x求偏导, Q对x求偏导- P对y求偏导),结果是一个三维向量。应用主要是斯托克斯公式,即对于一个曲面(不封闭),用rotA点乘(dydz, dxdz,dxdy)再在这个曲面上取第二类曲面积分等于向量(P Q R)绕底部空间曲线(一定是封闭的)的曲线积分,注意曲线的绕向与所取曲面的侧的法向量必须满足右手定则,如不满足,在结果前加一个负号,结果是一个数,表示环流量。
要注意用高斯公式和斯托克斯公式,前者在封闭曲面,后者在封闭曲面内向量(P Q R)必须有连续一阶偏导数,即P Q R在积分区域内连续,且处处可偏导,无奇点。有奇点对于高斯公式要画一个包括奇点的单位球,要求曲面外侧,则结果为球面内侧通量,要求曲面内侧,则结果为球面外侧通量。注意球面外侧通量与球面内侧通量互为相反数。同理高斯公式对于二维的就是格林公式,逆时针封闭曲线积分与顺时针封闭曲线积分互为相反数。
Grad表示梯度,对象为二元函数或三元函数。f(x,y)分别对x,y求偏导,f(x,y,z) 分别对x,y,z求偏导。Grad的结果是一个三维向量。主要用于画等值线,等高线。正梯度方向是函数值上升最快的方向,负梯度方向是函数值下降最快的方向,
垂直于梯度的方向,即等值线和等高线的切线方向,函数值保持不变。
高等数学中易错知识点总结
1.在一元函数中,若函数在某点连续,则该函数在该点必有极限。
若函数在某点不连续,则该函数在该点必无极限。
2, 在一元函数中,若函数在某点可导,则函数在该点一定连续。
但是如果函数不可导,不能推出函数在该点一定不连续。
3. 基本初等函数在其定义域内是连续的,
而初等函数在其定义区间上是连续的。
4.若函数在某一区间上连续,则在这个区间上,该函数存在原函数。
若函数在某一区间上不连续,则在这个区间上,该函数也可能存在原函数,不能说该函数在区间上必无原函数。
5. 在二元函数中,两个偏导数存在与该函数的连续性没有关系。
但是若果二元函数可微,则该函数必然连续。
6.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。
在多元函数中,若偏导数存在,则极值点必为驻点,但驻点不一定是极值点。
7. 函数f(x)的周期性和奇偶性与它的导数的周期性和奇偶性有什么关系?
a.函数f(x)与它的导数的周期一样:可导的周期函数,其导数必定是周期函数
证明如下: 设可导函数为f(x),
因为它是周期函数,所以f(x+T)=f(x),
--->f'(x)=(x+T)'*f'(x+T)=1*f'(x+T)
所以f'(x+T)=f'(x),就是说它的导函数也是周期函数.
b. 函数f(x)与它的导数的奇偶性相反:可导的偶函数的导数是奇函数
证明如下: 一、根指导数定义和偶函数定义,有 f′(-x)=lim{[f(-x+h)-f(-x)]/h} =lim{[f(x-h)-f(x)]/(-h)} =-f′(x) 二、根据复合函数的求导法则, 设f(x)为偶函数,则有f(-x)=f(x) 对上式两边关于x求导数,则有
8. 设函数y=f(x)在x=a处可导,则函数y=f(x)的绝对值在x=a处不可导的充分条件是: f(a)=0,f'(a)≠0
证明如下:f(a)=0,f'(a)>0或f'(a)<0 ①f(a)=0,f'(a)>0
lim(x→a-)f'(x)=-f'(a) lim(x→a+)f'(x)=f'(a)≠-f'(a)=lim(x→a-)f'(x) ∴x=a处导数不存在
②f(a)=0,f'(a)<0 lim(x→a-)f'(x)=f'(a) lim(x→a+)f'(x)=-f'(a)≠f'(a)=lim(x→a-)f'(x)
∴x=a处导数不存在 如果想不通,就当f(x)=x吧,|x|在x=0处导数不存在
9.闭区间上的单调函数必可积。
闭区间上的连续函数必可积。
闭区间上有界且仅有有限个间断点的函数可积
10.有限个无穷小量的和仍是无穷小量。无限个无穷小量的和不一定是无穷小量
有限个无穷小量之积是无穷小量。无限个无穷小量的积不一定是无穷小量。
无穷小量与有界变量之积仍是无穷小量。无穷小量与常数的乘积不一定全是无穷小量。
11.两个无穷大量之和不一定为无穷大量,两个无穷大量之积必为无穷大量。
无穷大量与常数的乘积不一定全是无穷大量。
针对第10与11给出具体解析:
(1)无穷大量与常数的乘积可以分为两种情况,一种是与0的乘积,一种是与除0以外的常数,当与0相乘时,得到的是0,而不是无穷大量,可以这样说,无穷大量与除0以外的常数的乘积为无穷大量。同理,无穷小量与常数的乘积也可以分为类似的情况。
(2)无穷大量可以分为正无穷大量和负无穷大量,当正无穷大量与正无穷大量相乘时,得到的结果是无穷大量。当正无穷大量与负无穷大量相乘时,得到的是负无穷大量,因为负无穷大量也是无穷大量,所以无穷大量与无穷大量相乘时,得到一定是无穷大量。
(3)无穷大量与无穷大量之和不一定是无穷大量,因为如果是正无穷大量与负无穷大量之和,得到的结果可能是0,可能是常数,等等
思考一下:既然两个无穷大量之积必为无穷大量,则能否扩展到有限个无穷大量之积必为无穷大量,进一步扩展到无限个无穷大量之积必为无穷大量。
12可导与导函数的关系
可导是对定义域内的点而言的,处处可导则存在导函数, 只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。
13,连续与可积的关系
如果函数在某区域连续,那么函数在该区域可积,反之,函数在某区域可积,不能保证函数在该区域连续,比如存在第一类间断点的函数不连续,但可积。
14,切线与可导之间的关系
有切线不一定可导,是因为垂直于X轴的切线,它的斜率是无穷大,所以不可导。
可以得出结论:可导必有切线,有切线不一定可导(竖直切线)
以上知识点在判断题中非常实用
大题解题指导
高等数学考试中大题包括以下几种类型:1.求极限 2.求最值 3.求不定积分或定积分 4求隐函数的偏导数 5求二阶连续偏导数 6.二重积分 7.微分方程 8.求旋转体积或面积 9.证明题
1. 求极限:在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,详细的公式看高等数学学习指导与习题指南一书第8页。这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题
2. 求最值:这类题一般求导之后便可解出,不在过多叙述。
3. 求不定积分和定积分,在这类题中,一般会用到换元积分法和分部积分法,还有牛顿莱布尼茨公式。一般情况下,多做些题就没什么大问题。
4. 求偏导数:偏导数包括一阶偏导数和二阶偏导数。重点谈二阶偏导数,尤其是二阶混合偏导,在二阶以上的混合偏导中,用到的一个最重要的法则是链式法则,链式法则在很多时候,我们会迷,算到一半,不知道那到底是什么玩意,甚至看着自己算出的一个式子,自己都不明白,关于链式法则,我很想举例来说明,但是一般的电脑没有数学软件,那些符号根本无法显示,故建议看高等数学学习指导与习题指南一书第172页,它详细的论述了多元函数微分学中的一些重要知识点,当看完解题指导,自己独立的把教材194页例2做一下,做的时候,最好不要看例题的解题部骤,因为看例题的解题步骤会迷,当独立的把结果推算出来的时候,多元函数微分学的大概你掌握的已经差不多了。
5. 微分方程:这个类型的题,只需要把那一个解题的公式记住,然后往里面套公式即可,这是最简单也最枯燥的题,没什么新意,但是考试的时候,这类题还从未少过,每年都有。需要注意的是有时候求的是通解,有时候求的是特解。
6. 证明题:这种题还是离不开公式定理。一般情况下,用洛尔定理和微分中值定理即可,若再复杂的话,有时候就需要微分中值定理和积分中值定理连用,对于这类题,有时间则做,没时间就不做。
总的来说,高数其实不算太难,当你对它产生一种畏惧的时候,你就很难把它学好了。要喜欢这门课,就要先喜欢这门课的老师,考试要的也是心态,有些题,本来就不属于自己的能力范围的,就直接放弃,一直缠着只会是浪费时间,其它题没时间做,这道题又没做出来。现在复习高数的时候别怕浪费时间,因为补考前的一个月就是让你浪费的,正如高四的复习,那一年确确实实是让我们好好浪费的,所以一定要多花时间浪费在复习中,数学讲究的就是熟练,当你看到一道题的时候,自己首先要有一个感性的认识,对它有一个大体的把握,复习就要做到多看教材,复习的最高境界就是把教材习题化,也就是说,当你看到课本上的知识点的时候,脑中立刻会想起你曾经做过的那道题用过这个知识点,如果这个知识点要考试的话,它最有可能以什么方式呈现出来。
展开阅读全文