收藏 分销(赏)

光的干涉习题1.doc

上传人:s4****5z 文档编号:8801172 上传时间:2025-03-02 格式:DOC 页数:6 大小:186.50KB
下载 相关 举报
光的干涉习题1.doc_第1页
第1页 / 共6页
光的干涉习题1.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
第一章 光的干涉(1) 一.选择题(21分) 1.(本题3分) 如图所示,波长为λ的平行单色光垂直入射在折射率 为n2 的薄膜上,经上下两个表面反射的两束光发生干涉, 若薄膜的厚度为e ,而且,n1 >n2 >n3 ,则两束反射光在相 遇点的相位差为: [ ] (A) 4πn2 e /λ (B)2πn2 e /λ (C)4πn2 e /λ+ π (D)2πn2 e /λ-π 2.(本题3分) 如上图所示,平行单色光垂直照射到薄膜上,经上下两个表面反射的两束光发生干涉,若薄膜的厚度为e ,并且,n1 < n2 > n3 ,λ1为入射光在折射率为n1的媒质中的波长,则两束反射光在相遇点的相位差为 [ ] (A) 2πn2 e /( n1λ1) (B) 4πn1e /( n2λ1) +π (C) 4πn2 e /( n1λ1) +π (D) 4πn2 e /( n1λ1) 3.(本题3分) 在双缝干涉实验中,两缝间距离为 ,双缝与屏幕之间的距离为 ,波长为的平行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻之间的距离是 [ ] (A)2 λ D / d. (B) λ d / D (C) d D / λ (D) λ D / d 4.(本题3分) 在双缝干涉实验中,入涉光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A)仍为明条纹 (B)变为暗条纹 (C)既非明纹也非暗纹 (D)无法确定是明纹,还是暗纹 5.(本题3分) 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部 侵入n =1.60的液体中,凸透镜可沿OO ' 移动,用波长 λ=500 nm的单色光垂直入射,从上向下观察,看到中心 是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是 [ ] (A)78.1 nm (B)74.4 nm (C)156.3nm (D)148.8nm (E) 0 6.(本题3分) 在玻璃(折射率n3 =1.60)表面镀一层MgF2 (折射率n2=1.38)薄膜作为增透膜,为了使波长为5000Ǻ的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最少厚度应是 [ ] (A) 1250Ǻ (B) 1810Ǻ (C) 2500Ǻ (D) 781Ǻ (E) 906Ǻ 二.填空题(共37分) 1.(本题3分) 单色平行光垂直入射到双缝上。观察屏上P点两缝的 距离分别为r1和r2。设双缝和屏之间充满折射率为n 的媒质,则P点处二相干光线的光程为——————————。 2.(本题 3 分) 在空气中用波长为λ单色光进行双缝干涉实验时,观 察到干涉条纹相邻条纹的间距为1.33mm,当把实验装置放在水中时(水的折射率n=1.33),则相邻条纹的间距变为————————。 3. (本题 5 分) 如图所示,在双缝干涉实验中SS1=SS2用波长为λ的 光照射双缝S1和S2,通过空气在屏幕E上形成干涉条 纹。已知P点处为第三级明条纹,则S1和S2到P点 的光程差为——————。若将整个装置放于某中透明液体 中,P点为第四级明条纹,则该液体的折射率n=——————————。 4.(本题 3 分) 波长λ=600nm的单色光垂直照射到牛顿环装置上,第二级明纹与第五级明纹所对应的空气膜厚度之差为——————————nm。 5.(本题 3 分) 波长为λ的平行单色光垂直的照射到劈尖薄膜上,劈尖薄膜的这是率为n,第二条纹与第五条明纹所对应的薄膜厚度之差是————————。 6. (本题 3 分) 波长为λ的平行单色光垂直照射到劈尖薄膜上,若劈尖角为θ(以弧度计),劈尖薄膜折射率为n,则反射光形成的干涉条纹中,相邻明条纹的间距为——————————。 7.(本题 3 分) 波长为λ的平行单色光,垂直照射到劈尖薄膜上,劈尖角为θ,劈尖薄膜的折射率为n,第三条暗纹与第六条暗纹之间的距离为——————————。 8. (本题 3 分) 检验滚球大小的干涉装置 示意如图(a)。S为单色 光源,波长为λ,L为会 聚透镜,M为半透半反镜。 在平晶T1,T2之间放置A, B,C三个滚球,其中A为 标准件,直径为d0。在M 上方观察时,观察到等厚条 纹如图(b)所示。若轻压C 端,条纹间距变小,则可算 出B珠的直径d1=—————————; C珠的直径d2=——————————。 9.(本题 3 分) 用迈克尔干涉仪产生等厚干涉条纹,设入射光的波长为λ,在反射镜M2转动过程中,在总的观测区域宽度L内,观测到总的干涉条纹数从N1条增加到N2条。在此过程中M2转过的角度Δθ是——————————。 10.用迈克尔干涉仪作干涉实验,设入射光的波长为λ。在转动迈克尔干涉仪的反射镜M2过程中,在总的干涉区域宽度L内,观测到完整的干涉条纹数从N1开始逐渐减少,而后突变为同心圆环的等倾干涉条纹。若继续转动M2又会看到由疏变迷的 直线干涉条纹。直到在宽度L内有N2条完整的干涉条 纹为止。在此过程中M2转过的角度Δθ是————————。 11.在折射率为n3的平板玻璃上镀一层薄膜(折射率为n2), 波长为λ的单色平行光从空气(折射率为n1)中以入射 角i射到薄膜上,欲使反射光尽可能增强,所镀薄膜 的最小厚度是多少?(n1< n2< n3) 三. 计 算 题(本题65分) 1. 在杨氏双缝实验中,设两缝之间的距离为0.2 mm,在距双缝远的屏上观察干涉条纹,若入射光是波长为400 nm至760 nm的白光,问屏上离零级明纹20 mm处,那些波长的光最大限度地加强? 2. 薄钢片上有两条紧靠的平行细缝,用波长λ=5416Å的平面光波正入射到薄钢片上。屏幕距双缝的距离为D=2.00m,测的中央明条纹两侧的第五级明条纹间的距离为Δx=12.0mm。 (1) 求两缝间的距离。 (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (3) 如果使广播斜入射到钢片上,条纹间距将如何变化? 3. 白光垂直照射置于空气中的厚度为0.50 μm的玻璃片,玻璃片的折射率为1.50,在可见光(4000 Å ~7600 Å)范围内哪些波长的反射光有最大限度的增强? 4. 用波长λ=5000 Ǻ的平行光垂直照射折射率n=1.33的劈尖薄膜,观察反射光的等厚干涉条纹,从劈尖的棱算起,第5条明纹中心对应的膜厚度是多少? 5. 用迈克尔孙干涉仪的实验中所用单色光的波长为λ=5893Å,在反射镜M2转动过程中 在观察的干涉区域宽度L=12 mm内干涉条纹从N1=12条增加到N2=20条,求M2转过的角度。 6. 长度为=28mm的透明薄壁(厚度可忽略)容器放在迈克尔干涉仪的一条光路中,所用单色光的波长为λ=5893Å。当以氨气注入容器代替容器中的空气时,观测到干涉条纹移动了ΔN=36条。已知空气的折射率n1=1.000276,且氨气的折射率n2>n1,求氨气的折射率(要求计算到小数点后六位)。 M1 7. 图标装置称为图门干射仪,它是在 O1 迈克尔逊干涉一臂上用凸凹面反射 M2 镜M2代替原平面镜M2,且调节光 S 程OO1=OO2 分束镜与成角,现以 450 单色平行光入射。 (1) 在E处观察表面观察到的干 G O2 涉图样成什么形状?试求出第级亮纹的位置。 (2) 当M1朝G移动时,干涉条纹如何变化? E 8. 图所示,用波长为λ=6328Å的 单色点光源S照射厚度为 e = 1.00×10-5 m、折射率为 n2 = 1.50、半径为R = 10.0 cm 的圆形薄膜,点光源与薄膜的 垂直距离为d = 10.0 cm,薄膜 放在空气(n1 = 1.00 )中,观察透射光的等倾干涉条纹,问最多能看到几条? (注: 亮斑和亮环都亮纹) 9. 用波长为λ的单色光作光源,观察迈克尔孙干涉仪的等倾干涉条纹,先看到视场中共有10个亮纹(包括中心的亮斑在内),在移动反射镜M2的过程中,看到往中心缩进去10个亮纹,移动M2后,视场中共有5个亮纹(包括中心的亮斑在内),设不考虑两束相干光在分束板G1的镀银面上反射时产生的位相突变之差,试求开始时视场中心亮斑的干涉级k。 答案: 一. 选择题 1.(A) 2.(C) 3.(D) 4.(B) 5.(A) 6.(E) 二. 填空题 1.n (r2 - r1) 2.1mm 3.3λ ,1.33 4.900 5.3λ/(2n) 6.λ/(2nθ) 7.3λ/(2 nθ) 8.d0, d0-λ 9.λ (N2-N1) /2L 10.λ (N2+N1) /2L 11. 解:设膜的厚度为,令膜的上下表面反射的光束为1和2, 1、 2两束反射光的光程差为 δ=2e(n22-n12sin2i)0.5 两束反射光都有位相的突变,故因反射导致的附加光程差为零)。 相长干涉条件为δ=kλ k=1,2,3,…… 即 2e(n22-n12sin2i)0.5= kλ ∴ e= kλ/2(n22-n12sin2i)0.5 取 k=1,得到最小厚度 e1=λ/2(n22-n12sin2i)0.5 三、计算题 1. 解:已知:d=0.2mm, D=1m, L=20mm 依公式: δ=dL/D=kλ ∴ kλ= dL/D=4×10-3nm=4000nm 故当k=10 λ1=400nm k=9 λ2=444.4nm k=8 λ3=500nm k=7 λ4=571.4nm k=6 λ5=666.7nm 五种波长的光在所给观察点最大限度的加强。 2.解:(1)Δx=2kDλ/d ∴ d=2kDλ/Δx 此处 k=5 ∴ d=110Dλ/Δx=0.910mm (2) 共经过20个条纹间距,即经过的距离 L=20Dλ/d=24mm (3)不变 3.解:加强, 2ne+0.5λ=kλ, λ=3000/(2k-1) Å k=1, λ1=3000nm, k=2, λ2=1000nm, k=3, λ3=600nm , k=4, λ4=428.6nm, k=5, λ5=333.3nm ∴ 在可见光范围内,干涉加强的光的波长是 λ=600nm 和 λ=428.6nm. 4. 解: 明纹, 2ne+0.5λ=kλ (k=1,2,…) 第五条, k=5, ∴e=8.46×10-4mm 5. 解: Δθ=λ(N2-N1)/2L=1.96×10-4rad 6. 解: 2(n2-n1)d=ΔNλ ∴ n2=1.000655 7. 解: (1) ∵OO=OO, 所以经分光束镜成像于与之间形成牛顿环,且属于平行光垂直入射情况。故干涉纹是以为中心的明暗相同、内疏外密的同心圆,但圆心点为零级亮点其第级亮纹的半径为 rk=(kRλ)0.5, k=0、1、2…… (2)当M1朝G移动时,因空气隙厚度增加,干涉条纹将向中心收缩(即不断吞掉),但条纹疏密情况不变。 8 解:对于透射光等倾条纹的第K级明纹有: 2n2 e cos r =Kλ 中心亮斑的干涉级最高,为Kmax=47.4,其r=0 有:应取较小的整数,Kmax=47(能看到的最高干涉级为第47级亮斑)最外面的亮纹干涉级最低,为Kmin,相应的入射角为Im=45o,相应的折射角为rm,据折射定律有n1sinim= n2sinrm ∴rm=28.13° 由2 n2ecosrm=kminλ 得:Kmin=41.8 应取较大的整数,Kmin=42,(能看到的最低干涉级为42级亮斑) ∴最多能看到6个亮斑(第42,43,44,45,46,47级亮斑) 9 解: 设开始时干涉仪的等效空气薄膜的厚度为e1 , 则对于视场中心的亮斑有 2e1=kλ, ① 对于视场中最外面的一个亮纹有 2e1cos r =(k-9)λ ② 设移动了可动反射镜M2之后,干涉仪的等效空气薄膜厚度变为e2,则对于视场中心的亮斑有 2e2=(k-10)λ ③ 对于视场中最外面的一个亮纹有 2e2cos r =(k-14)λ ④ 联立解①——④,得:k=18
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服