资源描述
一、填空题
1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量) 。
2.液压传动装置由动力元件、执行元件、控制元件、辅助元件四部分组成,其中动力元件和执行元件为能量转换装置。
3.液体在管道中存在两种流动状态,层流时粘性力起主导作用,紊流时惯性力起主导作用,液体的流动状态可用雷诺数来判断。
4.在研究流动液体时,把假设既无粘性 又不可压缩 的液体称为理想流体。
5.由于流体具有粘性,液流在管道中流动需要损耗一部分能量,它由沿程压力 损失和局部压力损失两部分组成。
6.液流流经薄壁小孔的流量与小孔通流面积 的一次方成正比,与压力差的1/2次方成正比。通过小孔的流量对温度不敏感,因此薄壁小孔常用作可调节流阀。
7.通过固定平行平板缝隙的流量与 压力差一次方成正比,与缝隙值的三次方成正比,这说明液压元件内的 间隙的大小对其泄漏量的影响非常大
8. 变量泵是指 排量 可以改变的液压泵,常见的变量泵有单作用叶片泵、 轴向柱塞泵其中 单作用叶片泵是通过改变转子和定子的偏心距来实现变量, 轴向柱塞泵 是通过改变斜盘倾角来实现变量。
9.液压泵的实际流量比理论流量 大 ;而液压马达实际流量比理论流量 小 。
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为 柱塞与缸体 、 缸体与配油盘 、 滑履与斜盘 。
11.外啮合齿轮泵的排量与 模数 的平方成正比,与 齿数的一次方成正比。因此,在齿轮节圆直径一定时,增大 模数,减少 齿数 可以增大泵的排量。
12.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是吸油 腔,位于轮齿逐渐进入啮合的一侧是 压油 腔。
13.为了消除齿轮泵的困油现象,通常在两侧盖板上开 卸荷槽 ,使闭死容积由大变少时与压油 腔相通,闭死容积由小变大时与 吸油腔相通。
14.齿轮泵产生泄漏的间隙为端面间隙和 径向 间隙,此外还存在 啮合 间隙,其中 端面 泄漏占总泄漏量的80%~85%。
15.双作用叶片泵的定子曲线由两段 大半径圆弧、两段 小半径圆弧及四段过渡曲线组成,吸、压油窗口位于 过渡曲线段。
16.调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上 拐点压力的大小,调节最大流量调节螺钉,可以改变 泵的最大流量。
17.溢流阀为 进口 压力控制,阀口常 闭,先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为 出口 压力控制,阀口常 开 ,先导阀弹簧腔的泄漏油必须 单独引回油箱 。
18.调速阀是由 定差减压阀和节流阀串联 而成。
19.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将 马达排量 调至最大,用变量泵 调速;在高速段,泵排量为最大,用 变量马达调速。
20.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为( 压力控制和 行程控制。
二、选择题
1.流量连续性方程是( )在流体力学中的表达形式,而伯努力方程是( )在流体力学中的表达形式。
(A)能量守恒定律 (B)动量定理 (C)质量守恒定律 (D)其他 (C;A)
2.液体流经薄壁小孔的流量与孔口面积的( )和小孔前后压力差的( )成正比。
(A)一次方 (B)1/2次方 (C)二次方 (D)三次方 (A;B)
3.流经固定平行平板缝隙的流量与缝隙值的( )和缝隙前后压力差的( )成正比。
(A)一次方 (B)1/2次方 (C)二次方 (D)三次方 (D;A)
4.双作用叶片泵具有( )的结构特点;而单作用叶片泵具有( )的结构特点。
(A) 作用在转子和定子上的液压径向力平衡
(B) 所有叶片的顶部和底部所受液压力平衡
(C) 不考虑叶片厚度,瞬时流量是均匀的
(D) 改变定子和转子之间的偏心可改变排量 (A、C;B、D)
5.一水平放置的双伸出杆液压缸,采用三位四通电磁换向阀,要求阀处于中位时,液压泵卸荷,且液压缸浮动,其中位机能应选用( );要求阀处于中位时,液压泵卸荷,且液压缸闭锁不动,其中位机能应选用( )。
(A)O型 (B)M型 (C) Y型 (D) H型 (D;B)
6.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为( );并联在液压泵的出口,泵的出口压力又为( )。
(A) 5MPa (B) 10MPa (C)15MPa (D)20MPa (C;A)
7.在下 面几种调速回路中,( )中的溢流阀是安全阀,( )中的溢流阀是稳压阀。
(A) 定量泵和调速阀的进油节流调速回路
(B) 定量泵和旁通型调速阀的节流调速回路
(C) 定量泵和节流阀的旁路节流调速回路
(B、C、;A )
8.为平衡重力负载,使运动部件不会因自重而自行下落,在恒重力负载情况下,采用( )顺序阀作平衡阀,而在变重力负载情况下,采用( )顺序阀作限速锁。
(A)内控内泄式 (B)内控外泄式 (C)外控内泄式 D)外控外泄式 (B;D)
9.顺序阀在系统中作卸荷阀用时,应选用( )型,作背压阀时,应选用( )型。
(A)内控内泄式 (B)内控外泄式 (C)外控内泄式 (D)外控外泄式 (C;A)
10.双伸出杠液压缸,采用活塞杠固定安装,工作台的移动范围为缸筒有效行程的( );采用缸筒固定安置,工作台的移动范围为活塞有效行程的( )。
(A)1倍 (B)2倍 (C)3倍 (D)4倍 (B;C)
11.容积调速回路中,( )的调速方式为恒转矩调节;( )的调节为恒功率调节。
(A)变量泵—变量马达 (B)变量泵—定量马达 (C)定量泵—变量马达 (B;C)
12.已知单活塞杠液压缸的活塞直径D为活塞直径d的两倍,差动连接的快进速度等于非差动连接前进速度的( );差动连接的快进速度等于快退速度的( )。
(A)1倍 (B)2倍 (C)3倍 (D)4倍 (D;C)
13.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为( );有两个调整压力分别为5MPa和10MPa内控外泄式顺序阀串联在液泵的出口,泵的出口压力为( )。
(A)5Mpa B)10MPa (C)15MPa (C;B)
14.用同样定量泵,节流阀,溢流阀和液压缸组成下列几种节流调速回路,( )能够承受负值负载,( )的速度刚性最差,而回路效率最高。
(A)进油节流调速回 (B)回油节流调速回路 (C)旁路节流调速回路 (B、C)
15.为保证负载变化时,节流阀的前后压力差不变,是通过节流阀的流量基本不变,往往将节流阀与( )串联组成调速阀。
(A)减压阀 (B)定差减压阀 (C)溢流阀 (B)
16.在定量泵节流调速阀回路中,调速阀可以安放在回路的( ),而旁通型调速回路只能安放在回路的( )。
(A)进油路 (B)回油路 (C)旁油路 (A、B、C;A)
17.液压缸的种类繁多,( )可作双作用液压缸,而( )只能作单作用液压缸。
(A)柱塞缸 (B)活塞缸 (C)摆动缸 (B、C;A)
18.下列液压马达中,( )为高速马达,( )为低速马达。
(A)齿轮马达 (B)叶片马达 (C)轴向柱塞马达 (D)径向柱塞马达 (A、B、C;D)
19.位四通电液换向阀的液动滑阀为弹簧对中型,其先导电磁换向阀中位必须是( )机能,而液动滑阀为液压对中型,其先导电磁换向阀中位必须是( )机能。
(A)H型 (B)M型 (C)Y型 (D)P型 (C;D)
21.为保证锁紧迅速、准确,采用了双向液压锁的汽车起重机支腿油路的换向阀应选用( )中位机能;要求采用液控单向阀的压力机保压回路,在保压工况液压泵卸载,其换向阀应选用( )中位机能。
(A)H型 (B)M型 (C)Y型 (D)D型 (A、C ;A、B )
22.液压泵单位时间内排出油液的体积称为泵的流量。泵在额定转速和额定压力下的输出流量称为( );在没有泄漏的情况下,根据泵的几何尺寸计算而得到的流量称为( ),它等于排量和转速的乘积。
(A)实际流量 (B)理论流量 (C)额定流量 (C;B)
23.在实验中或工业生产中,常把零压差下的流量(即负载为零时泵的流量)视为( );有些液压泵在工作时,每一瞬间的流量各不相同,但在每转中按同一规律重复变化,这就是泵的流量脉动。瞬时流量一般指的是瞬时( )。
(A)实际流量 (B)理论流量 (C)额定流量 (B;B)
24.对于双作用叶片泵,如果配油窗口的间距角小于两叶片间的夹角,会导致( );又( ),配油窗口的间距角不可能等于两叶片间的夹角,所以配油窗口的间距夹角必须大于等于两叶片间的夹角。
(A) 由于加工安装误差,难以在工艺上实现
(B) 不能保证吸、压油腔之间的密封,使泵的容积效率太低
(C) 不能保证泵连续平稳的运动 (B;A)
25.双作用式叶片泵中,当配油窗口的间隔夹角>定子圆弧部分的夹角>两叶片的夹角时,存在( ),当定子圆弧部分的夹角>配油窗口的间隔夹角>两叶片的夹角时,存在( )。
(A) 闭死容积大小在变化,有困油现象
(B) 虽有闭死容积,但容积大小不变化,所以无困油现象
(C) 不会产生闭死容积,所以无困油现象 (A;B)
26.当配油窗口的间隔夹角>两叶片的夹角时,单作用叶片泵( ),当配油窗口的间隔夹角<两叶片的夹角时,单作用叶片泵( )。
(A) 闭死容积大小在变化,有困油现象
(B) 虽有闭死容积,但容积大小不变化,所以无困油现象
(C) 不会产生闭死容积,所以无困油现象 (A;C)
27.双作用叶片泵的叶片在转子槽中的安装方向是( ),限压式变量叶片泵的叶片在转子槽中的安装方向是( )。
(A) 沿着径向方向安装
(B) 沿着转子旋转方向前倾一角度
(C) 沿着转子旋转方向后倾一角度 (B、A;C)
28.当限压式变量泵工作压力p>p拐点时,随着负载压力上升,泵的输出流量( );当恒功率变量泵工作压力p>p拐点时,随着负载压力上升,泵的输出流量( )。
(A)增加 (B)呈线性规律衰减 (C)呈双曲线规律衰减 (D)基本不变 (B;C)
29.已知单活塞杆液压缸两腔有效面积A1=2A2,液压泵供油流量为q,如果将液压缸差动连接,活塞实现差动快进,那么进入大腔的流量是( ),如果不差动连接,则小腔的排油流量是( )。
(A)0.5q (B)1.5 q (C)1.75 q (D)2 q (D;A)
30.在泵-缸回油节流调速回路中,三位四通换向阀处于不同位置时,可使液压缸实现快进—工进-端点停留—快退的动作循环。试分析:在( )工况下,泵所需的驱动功率为最大;在( )工况下,缸输出功率最小。
(A)快进 (B)工进 (C)端点停留 (D)快退 (B、C;C)
31.系统中中位机能为P型的三位四通换向阀处于不同位置时,可使单活塞杆液压缸实现快进—慢进—快退的动作循环。试分析:液压缸在运动过程中,如突然将换向阀切换到中间位置,此时缸的工况为( );如将单活塞杆缸换成双活塞杆缸,当换向阀切换到中位置时,缸的工况为( )。(不考虑惯性引起的滑移运动)
(A)停止运动 (B)慢进 (C)快退 (D)快进 (D;A)
32.在减压回路中,减压阀调定压力为pj ,溢流阀调定压力为py ,主油路暂不工作,二次回路的负载压力为pL。若py>pj>pL,减压阀进、出口压力关系为( );若py>pL>pj,减压阀进、出口压力关系为( )。
(A)进口压力p1=py , 出口压力p2=pj
(B)进口压力p1=py , 出口压力p2=pL
(C)p1=p2=pj ,减压阀的进口压力、出口压力、调定压力基本相等
(D)p1=p2=pL ,减压阀的进口压力、出口压力与负载压力基本相等 (D;A)
33.在减压回路中,减压阀调定压力为pj ,溢流阀调定压力为py ,主油路暂不工作,二次回路的负载压力为pL。若py>pj>pL,减压阀阀口状态为( );若py>pL>pj,减压阀阀口状态为( )。
(A)阀口处于小开口的减压工作状态
(B)阀口处于完全关闭状态,不允许油流通过阀口
(C)阀口处于基本关闭状态,但仍允许少量的油流通过阀口流至先导阀
(D)阀口处于全开启状态,减压阀不起减压作用 (D;A)
34.系统中采用了内控外泄顺序阀,顺序阀的调定压力为px(阀口全开时损失不计),其出口负载压力为pL。当pL>px时,顺序阀进、出口压力间的关系为( );当pL<px时,顺序阀进出口压力间的关系为( )。
(A)p1=px, p2=pL (p1≠p2)
(B)p1=p2=pL
(C)p1上升至系统溢流阀调定压力p1=py ,p2=pL
(D)p1=p2=px (B;A)
35.当控制阀的开口一定,阀的进、出口压力差Δp<(3~5)ⅹ105Pa时,随着压力差Δp变小,通过节流阀的流量( );通过调速阀的流量( )。
(A) 增加 (B)减少 (C)基本不变 (D)无法判断 (B;B)
36.当控制阀的开口一定,阀的进、出口压力差Δp>(3~5)ⅹ105Pa时,随着压力差Δp增加,压力差的变化对节流阀流量变化的影响( );对调速阀流量变化的影响( )。
(A) 越大 (B)越小 (C)基本不变 (D)无法判断 (B;C)
37.当控制阀的开口一定,阀的进、出口压力相等时,通过节流阀的流量为( );通过调速阀的流量为( )。
(A) 0 (B)某调定值 (C)某变值 (D)无法判断 (A;A)
38.在回油节流调速回路中,节流阀处于节流调速工况,系统的泄漏损失及溢流阀调压偏差均忽略不计。当负载F增加时,泵的输入功率( ),缸的输出功率( )。
(A) 增加 (B)减少 (C)基本不变 (D)可能增加也可能减少 (C;D)
39.在调速阀旁路节流调速回路中,调速阀的节流开口一定,当负载从F1降到F2时,若考虑泵内泄漏变化因素时液压缸的运动速度v( );若不考虑泵内泄漏变化的因素时,缸运动速度v可视为( )。
(A)增加 (B)减少 (C)不变 (D)无法判断 (A;C)
三、判断题
1. 液压缸活塞运动速度只取决于输入流量的大小,与压力无关。 (○)
2.液体流动时,其流量连续性方程是能量守恒定律在流体力学中的一种表达形式。 (×)
3.理想流体伯努力方程的物理意义是:在管内作稳定流动的理想流体,在任一截面上的压力能、势能和动能可以互相转换,但其总和不变。 (○)
4.雷诺数是判断层流和紊流的判据。 (×)
5.薄壁小孔因其通流量与油液的粘度无关,即对油温的变化不敏感,因此,常用作调节流量的节流器。 (○)
6.流经缝隙的流量随缝隙值的增加而成倍增加。 (×)
7.流量可改变的液压泵称为变量泵。 (×)
8.定量泵是指输出流量不随泵的输出压力改变的泵。 (×)
9.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。 (○)
11.双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长。 (○)
12.双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环。 (×)
13.液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化。 (○)
15.液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用。 (×)
16.因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量。 (○)
17.双活塞杆液压缸又称为双作用液压缸,单活塞杆液压缸又称为单作用液压缸。 (×)
18.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。 (○)
19.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。 (×)
20.单向阀可以用来作背压阀。 (×)
21.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。 (○)
22.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀。 (○)
23.串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定的工作压力。 (×)
24.增速缸和增压缸都是柱塞缸与活塞缸组成的复合形式的执行元件。 (×)
25.变量泵容积调速回路的速度刚性受负载变化影响的原因与定量泵节流调速回路有根本的不同,负载转矩增大泵和马达的泄漏增加,致使马达转速下降。 (○)
26.采用调速阀的定量泵节流调速回路,无论负载如何变化始终能保证执行元件运动速度稳定。 (×)
29.在变量泵—变量马达闭式回路中,辅助泵的功用在于补充泵和马达的泄漏。 (×)
30.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。 (○)
32.压力控制的顺序动作回路中,顺序阀和压力继电器的调定压力应为执行元件前一动作的最高压力。 (×)
33.为限制斜盘式轴向柱塞泵的柱塞所受的液压侧向力不致过大,斜盘的最大倾角αmax一般小于18°~20°。 (○)
34.当液流通过滑阀和锥阀时,液流作用在阀芯上的液动力都是力图使阀口关闭的。 (×)
35.流体在管道中作稳定流动时,同一时间内流过管道每一截面的质量相等。 (○)
四、名词解释
1. 帕斯卡原理(静压传递原理) (在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。)
2. 系统压力 (系统中液压泵的排油压力。)
3. 运动粘度 (动力粘度μ和该液体密度ρ之比值。)
4. 液动力 (流动液体作用在使其流速发生变化的固体壁面上的力。)
5. 层流 (粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。)
6. 紊流 (惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。)
7. 沿程压力损失 (液体在管中流动时因粘性摩擦而产生的损失。)
8. 局部压力损失 (液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)
9. 液压卡紧现象 (当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)
10.液压冲击 (在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。)
11.气穴现象;气蚀 (在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。)
12.排量 (液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。)
13.自吸泵 (液压泵的吸油腔容积能自动增大的泵。)
14.变量泵 (排量可以改变的液压泵。)
15.恒功率变量泵 (液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。)
16.困油现象 (液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。)
17.差动连接 (单活塞杆液压缸的左、右两腔同时通压力油的连接方式称为差动连接。)
18.往返速比 (单活塞杆液压缸小腔进油、大腔回油时活塞的运动速度v2与大腔进油、小腔回油时活塞的运动速度v1的比值。)
19.滑阀的中位机能 (三位滑阀在中位时各油口的连通方式,它体现了换向阀的控制机能。)
20.溢流阀的压力流量特性 (在溢流阀调压弹簧的预压缩量调定以后,阀口开启后溢流阀的进口压力随溢流量的变化而波动的性能称为压力流量特性或启闭特性。)
21.节流阀的刚性 (节流阀开口面积A一定时,节流阀前后压力差Δp的变化量与流经阀的流量变化量之比为节流阀的刚性T:。)
22.节流调速回路 (液压系统采用定量泵供油,用流量控制阀改变输入执行元件的流量实现调速的回路称为节流调速回路。)
23.容积调速回路 (液压系统采用变量泵供油,通过改变泵的排量来改变输入执行元件的流量,从而实现调速的回路称为容积调速回路。)
25.速度刚性 (负载变化时调速回路阻抗速度变化的能力。)
五、分析题
1.如图所示定量泵输出流量为恒定值qp ,如在泵的出口接一节流阀,并将阀的开口调节的小一些,试分析回路中活塞运动的速度v和流过截面P,A,B三点流量应满足什么样的关系(活塞两腔的面积为A1和A2,所有管道的直径d相同)。
解:图示系统为定量泵,表示输出流量qP不变。根据连续性方程,当阀的开口开小一些,通过阀口的流速增加,但通过节流阀的流量并不发生改变,qA= qp ,因此该系统不能调节活塞运动速度v,如果要实现调速就须在节流阀的进口并联一溢流阀,实现泵的流量分流。
连续性方程只适合于同一管道,活塞将液压缸分成两腔,因此求qB不能直接使用连续性方程。根据连续性方程,活塞运动速度v = qA/A1,qB = qA/A1=(A2 / A1)qP
2.如图所示节流阀调速系统中,节流阀为薄壁小孔,流量系数C=0.67,油的密度ρ=900kg/ cm3,先导式溢流阀调定压力py=12×105Pa,泵流量q=20l/min,活塞面积A1=30cm2,载荷F=2400N。试分析节流阀开口(面积为AT)在从全开到逐渐调小过程中,活塞运动速度如何变化及溢流阀的工作状态。
解:节流阀开口面积有一临界值ATo。当AT>ATo时,虽然节流开口调小,但活塞运动速度保持不变,溢流阀阀口关闭起安全阀作用;当AT<ATo时,活塞运动速度随开口变小而下降,溢流阀阀口打开起定压阀作用。
液压缸工作压力
液压泵工作压力
式中 △p为节流阀前后压力差,其大小与通过的流量有关。
3.已知一个节流阀的最小稳定流量为qmin,液压缸两腔面积不等,即A1>A2,缸的负载为F。如果分别组成进油节流调速和回油节流调速回路,试分析:
1)进油、回油节流调速哪个回路能使液压缸获得更低的最低运动速度。
2)在判断哪个回路能获得最低的运动速度时,应将下述哪些参数保持相同,方能进行比较。
解:1)进油节流调速系统活塞运动速度v1= qmin/A1;
出口节流调速系统活塞运动速度 v2= qmin/A2
因A1>A2,故进油节流调速可获得最低的最低速度。
2)节流阀的最小稳定流量是指某一定压差下(2~3×105Pa),节流阀在最小允许开度 ATmin时能正常工作的最小流量qmin。因此在比较哪个回路能使液压缸有较低的运动速度时,就应保持节流阀最小开口量ATmin 和两端压差△p相同的条件。
设进油节流调速回路的泵压力为pp1,节流阀压差为△p1则:
设出口调速回路液压缸大腔压力(泵压力)为pp2 ,节流阀压差为△p2 ,则:
由最小稳定流量qmin相等的定义可知:△p1=△p2 即: 为使两个回路分别获得缸最低运动速度,两个泵的调定压力 pp1、 pp2 是不相等的。
5.如图所示的回路为带补油装置的液压马达制动回路,说明图中三个溢流阀和单向阀的作用。
解:液压马达在工作时,溢流阀5起安全作用。制动时换向阀切换到中位,液压马达靠惯性还要继续旋转,故产生液压冲击,溢流阀1,2分别用来限制液压马达反转和正转时产生的最大冲击压力,起制动缓冲作用。另一方面,由于液压马达制动过程中有泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀3和4从油箱向回路补油。
6.如图所示是利用先导式溢流阀进行卸荷的回路。溢流阀调定压力 py=30×105Pa。要求考虑阀芯阻尼孔的压力损失,回答下列问题:
1)在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路是否始终是连通的?
2)在电磁铁DT断电时,若泵的工作压力 pB=30×105Pa, B点和E点压力哪个压力大?若泵的工作压力pB=15×105Pa,B点和E点哪个压力大?
3)在电磁铁DT吸合时,泵的流量是如何流到油箱中去的?
解:1)在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路始终得保持连通
2)当泵的工作压力pB=30×105Pa时,先导阀打开,油流通过阻尼孔流出,这时在溢流阀主阀芯的两端产生压降,使主阀芯打开进行溢流,先导阀入口处的压力即为远程控制口E点的压力,故pB> pE;当泵的工作压力pB=15×105Pa 时,先导阀关闭,阻尼小孔内无油液流动,pB= pE。
3)二位二通阀的开启或关闭,对控制油液是否通过阻尼孔(即控制主阀芯的启闭)有关,但这部分的流量很小,溢流量主要是通过CD油管流回油箱。
7.图(a),(b),(c)所示的三个调压回路是否都能进行三级调压(压力分别为60×105Pa、40×105Pa、10×105Pa)?三级调压阀压力调整值分别应取多少?使用的元件有何区别?
解: 图(b)不能进行三级压力控制。三个调压阀选取的调压值无论如何交换,泵的最大压力均由最小的调定压力所决定,p=10×105Pa。
图(a)的压力阀调定值必须满足pa1=60×105Pa,pa2=40×105Pa,pa3=10×105Pa。如果将上述调定值进行交换,就无法得到三级压力控制。图(a)所用的元件中,a1、a2必须使用先导型溢流阀,以便远程控制。a3可用远程调压阀(直动型)。
图(c)的压力阀调定值必须满足pc1=60×105Pa ,而pc2、pc3是并联的阀,互相不影响,故允许任选。设pc2=40×105Pa ,pc3=10×105Pa,阀c1必须用先导式溢流阀,而c2、c3可用远程调压阀。两者相比,图(c)比图(a)的方案要好。
9.如图所示的系统中,主工作缸Ⅰ负载阻力FⅠ=2000N,夹紧缸II在运动时负载阻力很小可忽略不计。两缸大小相同,大腔面积 A1=20cm2,小腔有效面积A2=10cm2,溢流阀调整值py =30×105Pa,减压阀调整值pj=15×105Pa。试分析:
1) 当夹紧缸II运动时:pa和pb分别为多少?
2) 当夹紧缸II夹紧工件时:pa和pb分别为多少?
3)夹紧缸II最高承受的压力pmax为多少?
解:1)2)由于节流阀安装在夹紧缸的回油路上,属回油节流调速。因此无论夹紧缸在运动时或夹紧工件时,减压阀均处于工作状态,pA=pj=15×105Pa。溢流阀始终处于溢流工况,pB= py=30×105Pa。
3)当夹紧缸负载阻力FII=0时,在夹紧缸的回油腔压力处于最高值:
11.图示的液压回路,原设计要求是夹紧缸I把工件夹紧后,进给缸II才能动作;并且要求夹紧缸I的速度能够调节。实际试车后发现该方案达不到预想目的,试分析其原因并提出改进的方法。
解: 图(a)的方案中,要通过节流阀对缸I进行速度控制,溢流阀必然处于溢流的工作状况。这时泵的压力为溢流阀调定值,pB= py。B点压力对工件是否夹紧无关,该点压力总是大于顺序阀的调定值px,故进给缸II只能先动作或和缸I同时动作,因此无法达到预想的目的。
图(b)是改进后的回路,它是把图(a)中顺序阀内控方式改为外控方式,控制压力由节流阀出口A点引出。这样当缸I在运动过程中, A点的压力取决于缸I负载。当缸I夹紧工件停止运动后,A点压力升高到py,使外控顺序阀接通,实现所要求的顺序动作。图中单向阀起保压作用,以防止缸II在工作压力瞬间突然降低引起工件自行松开的事故。
13.在图示的夹紧系统中,已知定位压力要求为10×105Pa,夹紧力要求为3×104N,夹紧缸无杆腔面积A1=100cm,试回答下列问题: 1)A,B,C,D各件名称,作用及其调整压力; 2)系统的工作过程。
解:1)A为 内控外泄顺序阀,作用是保证先定位、后夹紧的顺序动作,调整压力略大于10×105Pa ;
B为卸荷阀,作用是定位、夹紧动作完成后,使大流量泵卸载,调整压力略大于10×105Pa ;
C为压力继电器,作用是当系统压力达到夹紧压力时,发讯控制其他元件动作,调整压力为30×105Pa
D为溢流阀,作用是夹紧后,起稳压作用,调整压力为30×105Pa 。
2)系统的工作过程:系统的工作循环是定位—夹紧—拔销—松开。其动
展开阅读全文