资源描述
摘要
摘 要
通信信号调制类型的自动识别广泛应用于信号确认、干扰辨识、无线电侦听、电子对抗和信号监测等领域。传统的通信电台或系统是针对特定调制样式和带宽的单一型系统,其应用范围非常有限,很不适应目前的多调制、多服务的通信系统。由于多调制的存在,对于一个通信信号进行接收解调的前提条件是要确定该信号的调制样式,因此信号调制样式的自动识别是软件无线电接收机中必须具备的功能之一。本文首先对各种通信信号进行了理论分析,在此基础上针对数字调制信号采用了基于决策论方法的调制方式识别算法,并利用MATLAB软件进行了计算机仿真。本文的调制识别算法是基于决策论方法,该方法具有运算量小,识别效果好等优点。
关键字:调制识别;算法;仿真
39
ABSTRACT
The auto identification of modulation style of communication signal is widely used in many kinds of domain, such as signal surveillance and detection, interference recognization, radio interception, and electronic countermeasures. Traditional communication radio is designed for single system with given modulation and bandwidth.It’s application field is finite and it can not adapt to the system of multi-modulation, multi-service at present.For the using of multi-modulation, the precondition of receiving and demodulating signal is to decide the type of the modulation. So automatic recognition of modulation signal is a required function of software radio receiver.
First in this paper, various kinds of communication signals are analysed on theories,based on which, aimed at digital modulations,using arithmetic for modulation style identification based on decision-theoretic, after that, the whole modulation process is studied by using MATLAB. The decision-theoretic on which our arithmetic is based has some advantages as computational advantage and good identification effect.
Key words: Modulation Recognizing ;Algorithm;Simulation
目录
目 录
第一章 引言 1
本章小结 1
第二章 绪论 3
2.1研究背景 3
2.2发展概况 3
2.3一般调制样式识别过程的框架结构 5
3.1引言 7
3.2软件无线电中信号调制通用模型 7
3.3软件无线电接收机的数学模型 8
3.4软件无线电中的载波同步 10
3.5决策树 12
4.1数字调制信号的模型 15
4.1.1幅度键控调制(ASK) 15
4.1.2相移键控调制(PSK) 16
4.1.3频移键控调制(FSK) 16
4.1.4正交振幅调制信号(QAM) 17
4.2调制信号的自动识别 18
4.2.1特征参数集 18
4.2.2分类识别 20
4.3调制信号识别中应注意的问题 22
4.4仿真及结果分析 23
4.4.1数字调制信号的产生 23
4.4.2瞬时信息的获取 26
4.4.3仿真试验及结果分析 28
第五章 结论及展望 29
5.1对本文工作的总结 29
5.2决策树识别中存在的问题 29
5.3对今后工作的展望 29
参考文献 31
致 谢 32
附 录 33
程序:信号产生、参数提取及识别过程 33
外文资料原文 40
翻译文稿 41
第一章 引言
第一章 引言
无线通信在现代通信中占据着极其重要的位置,被广泛应用于商业、气象、军事、民用等领域。当代无线通信系统很多,例如卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、微波通信系统等等。各种无线通信系统的调制方式也很多,例 如 AM、FM、PM、DSB、SSB、VSB、FSK、PSK、MSK、GMSK、QAM 等等。各种通信系统由于自身的特点而应用于不同的场合。由于无线通信具有设备简单、便于携带、易于操作、架设方便等特点,在军事通信领域是不可缺少的重要通信手段。然而,军用电台往往是根据某种特定的用途而设计的,功能单一,有些电台的基本结构相似,而信号特征差异很大。这些差异极大地限制了不同电台之间的互连互通。而且,由于不同频段的电台只能满足某些特定的要求,无法满足部队各种各样的军事需求,给协同作战带来了困难。
软件无线电是一种实现无线通信的新概念和新体制,它针对现在无线通信领域存在的一些问题,如:多种通信体系共存,各种标准竞争激烈,频带资源紧张等等,特别是无线个人通信系统的发展,使得新的系统层出不穷,产品生存周期越来越短,原有的以硬件为主的无线通信体制难以适应这种局面,软件无线电技术应运而生,其目标是建立一个通用无线电通信硬件平台,将尽可能多的通信功能用软件实现。它是继模拟通信到数字通信和固定通信到移动通信之后的无线通信领域的又一次革命。
由于多调制的存在,对于一个通信信号进行接收解调的前提条件是首先要确定该信 号的调制样式及其信号参数,如信号带宽,传输速率等等,即要有自动的多调制的识别 方法,只有能自动的识别出信号的调制方式,才能准确的进行解调,并根据业务需要决 定下一步的处理。所以,信号调制样式的自动识别是软件无线电接收机中必须具备的功能之一。
本章小结
本文在综合考虑现有调制识别算法的基础上,在调制识别过程的特征提取部分,采用Nandi等人提出的参数。在分类识别部分,采用结构简单,计算量小,实时性好的决策树分类器,从而实现对集中常见的数字调制方式的识别。
本文使用Math Works公司的 Matlab6.5 软件对调制识别算法进行仿真,检验算法性能。试验表明,在信噪比大于10dB的条件下,识别率在99%以上。
本文共分五章,本章为引言。
第二章是绪论,论述软件无线电接收机中调制识别技术的发展背景以及本文的主要工作。
第三章研究软件无线电接收机中调制样式识别的理论基础,包括信号调制的通用模型、软件无线电中的同步技术和决策树理论。
第四章研究了常用数字调制信号的模型和基于决策理论的调制样式识别方法,利用Nandi等人提出的参数对数字调制样式进行识别。并对调制识别算法进行仿真试验。
第五章对全文进行总结和展望,并对未解决的问题和将来的研究方向进行探讨。
第三章 绪论
第二章 绪论
2.1研究背景
调制方式识别是介于能量检测和信号完全解调之间的过程。对于能量检测只要知道接收信号粗略的中心频率和带宽。而信号解调不仅需要知道精确的中心频率和带宽,还必须知道该信号采用的调制方式以及对应的调制参数。而调制方式识别的成功率则依赖于待识别调制方式集合的情况,以及各种先验信息。当集合中待识别的调制方式较多,尤其包含复杂调制方式时,就要求几乎精确的中心频率和带宽,对于相对简单的识别集合,则可以适当放宽上述条件。
调制方式识别系统一般包括三个部分,即接收机前端、调制识别器和输出部分。接收机前端完成信号检测和频率变换。调制识别器识别信号的调制方式,并提取调制参数。输出部分实现信号解调的信息处理。
调制方式识别是基于软件无线电的通信系统或者通信对抗应用的重要环节。首先,只有正确地估计信号调制方式和参数,才能正确地解调。其次,了解调制方式和参数有助于信号证实和确定合适的干扰波形。
2.2发展概况
早期的调制识别方法是采用一系列不同调制方式的解调器,接收的高频信号经下变频为中频后,输入各解调器,获得可观察或可听的信号,再由操作人员用耳机、示波器 或频谱仪分析解调结果,人为地判定调制方式。操作员一般通过中频时域波形、信号频 谱、瞬时幅度、瞬时频率和信号的声音等等信息进行判断。人工参与的识别需要有经验的操作人员,一般可以成功识别持续较长时间、码元速率较低的幅度键控(ASK)信号 和调制指数较大的频移键控(FSK)信号,但不能识别需要相干处理的相移键控(PSK)信号。这种人工参与的识别方法,判决结果包含人的主观因素在内,会因人而异,所能识别的调制类型也很有限。而自动调制识别技术不仅可以克服人工参与识别时遇到的各种困难,而且对中心频率和带宽的估计误差、相邻信道串音、噪声和衰落效应等干扰因素也具有很强的鲁棒性。
1969年4月,C.S.Waver 等四名作者在斯坦福大学技术报告上发表了第一篇研究自动调制识别的论文《采用模式识别技术实现调制类型的自动分类》。此后,不断有研究调制识别技术的论文出现在各类技术刊物上。1984年,Liedtke提出了一种数字调制识别方法,这种方法采用信号幅度直方图、频率直方图、差分相位直方图,以及幅度方差和频率方差等特征参数,采用模式识别的分类方法,通过提取的特征参数与理想样本的 特征参数相比较,按最近原则进行信号自动分类。这种方法能够在SNR>18dB的条件下,有效识别CW、2ASK、2FSK、2PSK、4PSK和8PSK 信号。1986年,Fabrizi 等提出一种模拟调制识别方法,该方法基于瞬时幅度和瞬时频率方面的信息,采用信号包络峰值与均值之比R,以及采用瞬时频率绝对值的均值作为特征参数。该方法能够在 SNR>35dB 的条件下,有效识别 CW、FM 和 DSB 等信号。1989 年 Chan 和 Gadbois 也提出了一种类似 Fabrizi 的方法,该方法根据信号包络特点,采用信号包络方差与信号均值平方之比R作为判决准则。该参数在 SNR>13.5dB 的条件下,有效区分幅度调制信号和非幅度调制信号的正确率不低于89%。1990年,A.Ploydoros 和 K.Kim 等提出了准优化的对数似然比识别方法,其思想是采用高斯白噪声干扰下的数字调相信号的近似似然比函数,通过优化得到LR判决准则,从而区分MPSK信号。该方法在信噪比大于零时,有较好的识别效果。1992年,S.S.Soliman 和 S.Hsue,提出一种数字相位统计相关变量识别方法,利用 PSK 信号相位的阶统计均值随单调递增的特性,对各种MPSK信号进行识别。这以后H.Leib和S.Pasupathy等人也对高斯白噪声干扰的信号相位的概率分布进行了研究,为调相信号的识别提供了理论根据,他们识别目标主要是MPSK信号或CW、MPSK、MFSK等信号。1995 年,基于Harry Uib 等对高斯噪声干扰信号的相位概率密度的分析,Y.Yang和 S.S.Soliman等提出一种针对MPSK之类信号的识别方法。该方法利用 Tikhonov函数逼近信号的相位概率密度,然后推导出假设检验的统计检测量,可以识别低信噪比条件下的数字调相等信号。在1995年到1998年的三年间,A.K.Nandi和E.E.Azzouz发表了多篇文章,利用他们提出的九个关键特征,分别采用决策理论、神经网络和神经网络级联的方法对模拟和数字信号进行分类识别,在信噪比大于10dB时,具有良好的识别效果。2001年,M.L.D.Wong和 A.K.Nandi提出了利用 MLP(Multi-layer perceptron)进行数字调制识别的方法,该方法在SNR>0dB 时,识别正确率大于97.9%。2003年,他们又提出将神经网络与遗传算法相结合的方法,该方法在SNR>0dB时,识别正确率大于99%。其它主要的识别方法还有S,Hsue的过零点识别方法,A.W.Gardner的周期谱识别方法等等,在此就不一一列举。近几年来,人们又将神经网络技术、小波变换技术、高阶谱分析技术与调制识别技术相结合,提出了很多新型的调制识别方法。
2.3一般调制样式识别过程的框架结构
通信信号调制样式识别方法虽然多种多样,但调制识别问题实际上是一种典型的模式识别问题,其一般过程如图2.1所示。
信号
预处理
特征
提取
分类
识别
调制
信号
图2.1 一般调制样式识别过程的结构框图
调制识别过程的基本框架包括三部分:信号预处理部分、特征提取部分和分类识别部分。信号预处理部分的主要功能是为后续处理提供合适的数据;特征提取部分是从输入的信号序列中提取对调制识别有用的信息;分类识别部分的主要功能是判断信号调制 类型的从属关系。此类方法在识别系统的构建过程中需要一定数量的各类调制信号样本,其性能评价一般采用各种信噪比条件下的正确识别率。信号预处理任务一般包括:频率下变频、同相和正交分量分解、载频估计和载频分量的消除等。在多信道多发射源的环境中,信号预处理部分要能有效地隔离各个信号,保证一次只有一个信号进入后续的调制识别环节。特征提取部分是从数据中提取信号的时域特征或变换域特征。时域特征包括信号的瞬时幅度、瞬时相位或瞬时频率的直方图或其它统计参数。变换域特征包括功率谱、谱相关函数、时频分布及其它统计参数。对于变换域特征,采用FFT方法就能很好的获取,而幅度、相位和频率等时域特征主要由Hilbert 变换法,同相正交(I-Q)分量法和过零检测法等获得。在分类识别部分,即选择和确定合适的判决规则和分类器结构,主要采用决策树结构的分类器和神经网络结构的分类器。决策树分类器采用多级分类结构,每级结构根据一个或多个特征参数,分辨出某类调制类型,再下一级结构又根据一个或多个特征参数,再分辨出某类调制类型,最终能对多种类型进行识别。这种分类器结构相对简单,实时性好,但需要事先确定判决门限,自适应性差,适合分类特征参数区分很好的信号识别。神经网络分类器具有强大的模式识别能力,能够自动适应环境变化,能较好处理复杂的非线性问题,而且具有较好的稳健性和潜在的容错性,可获得较高的识别率,但识别前对神经网络的训练需要一定的时间,其计算量大、实时性差。
为了有效地实现分类识别,必须对原始的输入数据进行变换,得到最能反映分类差别的特征。这些特征的提取和选择是非常重要的,它直接影响分类器的设计和性能。理想情况下,经过提取和选择的特征矢量应对不同的调制类型具有明显的差别,然而在实际中却不容易找到那些具有良好分辨率的特征,或受条件限制不能对它们进行测量,从而使特征提取和选择的任务复杂化,因而特征提取和选择是信号调制识别系统中首要和基本的问题。分类识别是依据信号特征的观测值将其分到不同类别中去,选择和确定合适的判决规则和分类器结构,也是信号调制识别系统中的重要内容。
第三章 自动调制识别基础
第三章 自动调制识别基础
3.1引言
在许多通信系统中都使用了数字调制技术。与模拟调制相比,数字调制有许多优点,主要包括:抗噪声能力强,容易将几种形式的信息(如声音、数据和图像)融合在一起,安全性好等。在现代通信中,数字调制技术发挥了模拟调制无法比拟的作用,鉴于此,本文后继的自动调制识别技术都是针对数字调制进行的。
信源编码的目的是提高信源的效率,去除冗余度。信道编码的目的主要有两点:
(1)要求码列的频谱特性适应通道频谱特性,从而使传输过程中能量损失最小,提高信号能量与噪声能量的比例,减小发生差错的可能性,提高传输效率。
(2)增加纠错能力,使得即便出现差错,也能得到纠正。
一般传输通道的频率特性总是有限的,即有上、下限频率,超过此界限就不能进行有效的传输。如果数字信号流的频率特性与传输通道的频率特性很不相同,那么信号中的很多能量就会失去,信噪比就会降低,使误码增加,而且还会给邻近信道带来很强的干扰。因此,在传输前要对数字信号进行某种处理,减少数字信号中的低频分量和高频分量,使能量向中频集中,或者通过某种调制过程进行频谱的搬移。这两种处理都可以被看作是使信号的频谱特性与信道的频谱特性相匹配。数字信号的载波调制可以认为是信道编码的一部份。
3.2软件无线电中信号调制通用模型
随着当代通信技术的飞速发展,越来越多的调制技术出现并被运用。按照常规的方法,产生每一种信号就需要一个硬件电路,甚至一个模块,要么要使一部通信设备中产生几种、几十种通信信号,其余电路就会极其复杂,体积重量都会很大,而且增加一种新的调制方式也非常困难。
软件无线电中的各种调制信号是以一个通用的数字处理平台为支撑,利用相应的软件模块来实现,要采用哪一种信号只要调用相应的模块即可。因此,在软件无线电中,可以不断的更新调制模块来适应要求,具有很大的灵活性和开放性。
在现代通信中,通信信号的种类很多,但从理论上来说,各种通信信号都可以用正交调制的方法来实现。如图:
信源I
多相滤波
信源Q
多相滤波
图3.1 正交调制的实现
根据图3.1可以写出时域表达式
(3-1)
调制的方法是根据调制方式先求出、,然后再与两个正交本振相乘并求和得到。实现过程,如上图所示。调制信号的信息包含在和内。由于各种调制信号都是在数字域实现的,因此,在数字域实现时要对上式进行数字化。
(3-2)
为采样频率的角频率。在对调制信号和载波频率进行数字化时,其采样频率可能不一样。这里多相滤波的主要作用就是用来提高数据源的采样速率,似的调制信号的采样速率和载波的采样速率一致。
传输数字信号时也有三种基本调制方式:幅度键控,频移键控和相移键控,它们分别对应于用正弦波的幅度、频率和相位来传递数字基带信号。在后面将介绍得到广泛应用的几种数字调制方法。
3.3软件无线电接收机的数学模型
软件无线电数学模型是对软件无线电进行理论分析、工程设计以及专用集成电路设计的基础和前提,也是深入理解软件无线电概念,形成系统性理论框架的最佳途径。软件无线电接收机的数学模型,是很好的理解调制识别方法的前提。软件无线电接收机的数学模型主要包括单通道软件无线电接收机数学模型、并行多通道软件无线电接收机数学模型和基于多相滤波的信道化软件无线电接收机数学模型,本节以单通道软件无线电接收机数学模型为例,以便建立软件无线电接收机的概念。
所谓单通道软件无线电接收机是指这种接收机在同一时刻只能接收所选择的一个信道的信号进行接收解调分析,不能同时接收多个信号。射频信号经过不同形式的采样数字化后,形成了统一的基带数字谱,对处理的目的就是如何从中提 取出有效带宽内信号载频为的信号。我们知道,任何一种调制形式的信号均可表示为:
(3-3)
上式中,、分别为信号的幅度调制分量和相位调制分量,为信号载频或中心频率。如果用正交分量来表示,则原式可以改写为:
(3-4)
上式中,
(3-5)
分别称为信号的同相分量和正交分量。由于载频不含信息,所以用同相、正交分量即可完全描述给定信号的特性,而对信号进行接收解调的目的实际上就是提取这两个正交分量。
I(n)
NCO
LPF
LPF
解 调 算 法
Q(n)
S(n)
解调输出
图3.2 数字正交解调通用模型
已调信号经过正交混频和抽取滤波后得到正交基带信号和,再经过卡尔迪变换求出信号的瞬时包络、瞬时相位和瞬时频率等特征参数,连同正交基带分量和一起送到后续的解调分析模块完成信号的识别、解调等处理。卡尔迪变换如下列式所示:
(3-6)
(3-7)
(3-8)
在利用相位差分计算瞬时频率,即时,由于计算要进行除法和反正切运算,这对于非专用数字处理器来说比较复杂,在用软件实现时也可以用下面的方法来计算瞬时频率:
(3-9)
(3-10)
(3-11)
软件无线电接收机的数学模型,主要完成了一般调制样式识别过程中的信号预处理(主要是数字下变频)和瞬时特征提取。
3.4软件无线电中的载波同步
在电台相互通信时,要正确地接收对方的信息,接收方必须从接收信号中恢复出载波信号,使双方载波频率、相位一致,这就是载波同步。载波同步的方法分为两类,一类是在发送有用信号的同时,在适当的频率上发送导频信号,导频信号的功率较小,这种方法很少采用。另一类方法是从接收到的信号中直接提取,这种载波同步可以用平方 变换法、同相正交锁相环法或用DSP通过软件方法来实现。
平方变换法就是对输入信号进行平方后,获取所需的载波,原理框图如图2.4所示。
平方率部件
二分频器
输出
输入
图3.3 平方法载波同步
以2PSK信号为例,来讨论用正交锁相环获取载波频率,这个锁相环又叫科斯塔斯锁相环(Costas),其原理如图2.5所示。环路中的压控震荡器分别和两个互相正交的环路构成锁相环。压控震荡器分别向两个环路提供互相正交的载波,这两个载波与输入信 号在各自的环路中进行鉴相,经过低通滤波后,两个基带信号相乘,相乘后就消除了误差信号中的数字信息,误差信号控制VCO稳定在输入载波频率上。2PSK信号的表达式为:
(3-12)
式中,。这样,输入VCO的两路正交信号分别为
(3-13)
(3-14)
经过鉴相器、低通滤波器后,同相、正交两个环路的误差信号分别为:
(3-15)
(3-16)
式中为鉴相因子。两个误差信号相乘后,输出为:
(3-17)
压控震荡器将受误差信号的控制,锁定在误差电压最小处,即或处。因此科斯塔斯环的输出为相干载波,但是存在相位模糊问题,相差可能为0,也可能为。 对于QPSK信号仍然可以采用科斯塔斯环,只是VCO的输出有四个,一个是同相分量, 另外几个分量分别移相,,,然后把四个鉴相器的输出相乘,消除误差信号中的数字信息。
VCO
环路滤波
LPF
LPF
信号
输入
Q支路
I支路
图3.4科斯塔斯环原理框图
3.5决策树
决策树,或称多级分类器,是模式识别中进行分类的一种有效方法,对于多类或多峰分布问题,这种方法尤为方便。利用树分类器可以把一个复杂的多类别分类问题转化为若干个简单的分类问题来解决。它不是企图用一种算法、一个决策规则去把多个类别 一次分开,而是采用分级的形式,使分类问题逐步得到解决。图2.4所示的就是一个决策树的例子。
一般讲,一个决策树由一个根节点、一组非终止节点和一些终止节点组成,可对标以各种类别标签,有时不同的终止节点上可以出现相同的类别标签。如果用表示决策树,那么,一个决策树对应于特征空间的一种划分,它把特征空间分成若干个区域,在每个区域中,某个类别的样本占优势,因此可标以该类样本的类别标签。
图3.5 决策树示意图
决策树的一种简单形式是二叉树。所谓二叉树,是指除叶节点外,树的每个节点仅分为两个分支,也就是说,每个节点都有且只有两个子节点和。二叉树结构分类器可以把一个复杂的多类别分类问题化为多级多个两类问题来解决,在每个节点, 都把样本集分为左右两个子集。分成的每一部分可能仍然包含多个类别的样本,可以把每一部分再分成两个子集……直至分成的每一部分只包含同一类别的样本,或某一类样本占优势为止。
在设计一个决策树时,主要应解决下面几个问题:
(1) 选择一个合适的树结构,即合理安排树的节点和分支;
(2) 确定在每个非终止节点上要使用的特征;
(3) 在每个非终止节点上选择合适的决策规则。
这三个问题解决了,就完成了决策树的设计。二叉树的设计也不例外。
把一个多类别分类问题转化为两类问题的形式是多种多样的,因此,对应的二叉树的结构也将各不相同。目的是要找一个最优的决策树。
显然,一个性能良好的决策树结构应该有小的错误率和低的决策代价。但是由于很难把错误率的解析表达式和树的结构联系起来,在每个节点上所采用的决策规则也仅仅是在该节点上所采用的特征观察值的函数,因此,即使每个节点上的性能都达到最优,也不能说整个决策树的性能达到最优。所以在实际问题中,人们往往提出其它一些优化准则,例如极小化整个树的节点数目,或极小化从根节点到叶节点的最大路程长度,或极小化从根节点到叶节点的平均路程长度等等,然后采用动态规划方法,力争设计出能 最好地满足某种准则的“最优”决策树。
第四章 基于决策理论的调制样式识别
第四章 基于决策理论的调制样式识别
4.1数字调制信号的模型
如第三章所述,在现代通信中,通信信号的种类很多,但从理论上来说,各种通信信号都可以用正交调制的方法来实现。实现方式如下:
4.1.1幅度键控调制(ASK)
用数字基带信号控制正弦波的幅度。
(1)信号
在这类调制中,载波的幅度随二进制被调制信号序列而变,化状态。具体可以表示为:
(4-1)
可以令那么信号可表示为
(4-2)
其中,为基带码元波形,为信源给出的二进制符号0或1, 为载波角频率,且有,为码元周期。
因此,要实现正交调制,只要令
(4-3)
就可以实现调制。
信号由于一个信号状态始终为0,此时相当于处于断开状态,所以也称为通断键控信号(信号)。若二进制序列的功率谱密度为,则
的功率谱密度表达式可以写为:
(4-4)
可知,信号的带宽是基带脉冲波形带宽的2倍。
(2)信号
进制幅度键控使用种可能的取值对载波幅度进行键控,在每个码元间隔内发送一种幅度的载波信号。进制数字幅度调制信号比信号传输效率更高。在相同的码元传输速率下,信号和的带宽相同,的信道利用率最高为, 的信道利用率可超。M进制幅度调制信号可表示为:
(4-5)
式中: g(t)式持续时间为T的矩形脉冲,为幅度值,有M种可能的取值,与信号类似,由式(4-3)就可以实现调制。
4.1.2相移键控调制(PSK)
用数字基带信号控制正弦波的相位。
(1)信号
方式是键控的载波相位按基带脉冲序列的规律而改变的数字调制方式,信号形式一般表示为:
(4-6)
式中:为基带码元波形,为信源取值-1或+1,即发送二进制符号 0时取1,发送二进制符号1时取-1,是载波角频率。这种调制方式的正交实现与信号十分相似。具体的实现见式(4-3)。
(2) M进制数字相位调制信号
在多进制相位调制中,MPSK信号的表示式:
(4-7)
式中:为受信息控制的相位参数,
4.1.3频移键控调制(FSK)
信号是符号0对应载波角频率,符号1对应载波角频率为的已调波形。它可以用一个矩形脉冲对一个载波进行调频实现,其表达式为:
(4-8)
式中的取值为0,1,g(t)为矩形脉冲,为的反码,T为码元周期。因此,只要把调制数据序列形成矩形脉冲,并把看成两个 信号相加就可以了,并令
(4-9)
利用式(4-2)、式(4-3)就可以实现正交调制。
4.1.4正交振幅调制信号(QAM)
正交振幅调制是一种多进制混合调幅调相的调制方式, 就是,和的信号分布如图4.1所示,这种分布图称为星座图。
图 4.1 信号的星座图
从图4.1可以看出,用个点的星座的位置来代表八进制的种数据信号, 这个点的相位各不相同,而振幅只有两种。用个点的星座的位置来代表十六进制的种数据信号,它有种相位,种振幅。
信号的数学表达式为:
(4-10)
式中,是宽度为的脉冲信号。
只要令:
(4-11)
就可以实现信号了。
4.2调制信号的自动识别
4.2.1特征参数集
本节针对共六种数字调制信号,提取了五个基于瞬时信息的特征参数,即零中心归一化瞬时幅度之谱密度最大值,零中心非弱信号段瞬时相位非线性分量绝对值的标准偏差,零中心非弱信号段瞬时相位非线性分量的标准偏差,零中心归一化瞬时幅度绝对值的标准偏差和零中心归一化非弱信号段瞬时频率绝对值的标准偏差。下面将对每个特征参数进行具体分析。对各数字调制信号,在中设定各参数为:载频,采样频率,码速率字符/秒,信号的调制频偏与码速率相同,码元个数N=100。
(1)零中心归一化瞬时幅度之谱密度最大值
由下式定义:
(4-12)
式中,为取样点数,为零中心归一化瞬时幅度,由下式计算:
(4-13)
式中,,而为瞬时幅度的平均值,用平均值来对瞬时幅度进行归一化的目的是为了消除信道增益的影响。
主要用来区分和其他其他数字调制信号。因为对信号,其包络(瞬时幅度)为常数,故其零中心归一化瞬时幅度为零,即。对信号因包含包络信息,其零中心归一化瞬时幅度不为零,故。信号由于受信道带宽的限制,在相位变化时刻会产生幅度突变,所以也包含幅度变化信息,即。所以用可以区分和其他数字调制信号。当然实际情况下不能以作为判别的分界线(门限)。而需要设置一个判决门限。
(2)零中心非弱信号段瞬时相位非线性分量绝对值的标准偏差
由下式定义:
(4-14)
式中是判断弱信号的一个幅度判决门限电平,是在全部取样数据中属于非弱信号值的个数,是经零中心化处理后瞬时相位的非线性分量,在载波完全同步是,有:
(4-15)
式中,为瞬时相位。
主要用来区分是4PSK信号还是2PSK或者ASK信号。因为对ASK信号不含相位信息,故,对2PSK信号因其只有两个相位值,故其零中心归一化相位绝对值也为常数,不含相位信息,故也满足。而对于4PSK信号,因其瞬时相位有四个值,故其零中心归一化相位绝对值不为常数,故有。
(3)零中心非弱信号段瞬时相位非线性分量的标准偏差
(4-16)
与的区别在于后者是相位绝对值的标准偏差,而前者是直接相位(非绝对值相位)的标准偏差。主要用来区分是ASK还是2PSK信号,因为对于ASK信号无直接相位信息,即,而2PSK信号含有直接相位信息(其瞬时相位取0或者),故
(4)零中心归一化瞬时幅度绝对值的标准偏差
由下式定义:
(4-17)
式中前面已经给出了它的定义式。主要用来区分式2ASK信号还是4ASK信号。因为对于2ASK信号它的幅度绝对值是一常数,不含幅度信息,所以有。而对于4ASK信号的幅度绝对值不是常数,仍含有幅度信息,所以。可设其判决门限为。
(5)零中心归一化非弱信号段瞬时频率绝对值的标准偏差
由下式定义:
(4-18)
式中,其中为数字信号的符号速率,为信号的瞬时频率。用来区分是2FSK信号还是4FSK信号。因为对2FSK信号,它的瞬时频率之忧个值,所以它的零中心归一化瞬时频率的绝对值是常数,则其标准偏差,而岁4FSK信号,由于它的瞬时频率有4个值,所以它的零中心归一化瞬时频率的绝对值不为常数,则其标准偏差。
4.2.2分类识别
(1)决策树识别
观察3.1.3节中各特征参数随信噪比的变化,采用决策树的识别分类如图所示。采用决策树的识别步骤为:
①计算待识别信号的零中心归一化瞬时幅度之谱密度最大值,与门限比较,将待识别的信号分成两类:(2ASK、4ASK、2PSK、4PSK)和(2FSK、4FSK),即不恒定包络信号和恒包络的信号;
②对于判别类属于(2FSK、4FSK)的信号,计算待识别信号的零中心归一化非弱信号段瞬时频率绝对值的标准偏差,与门限比较,将其分成两类:2FSK和4FSK;
③对于判别类属于(2ASK、4ASK、2PSK、4PSK)的信号,计算待识别信号的零中心非弱信号段瞬时相位非线性分量绝对值的标准偏差,与门限比较, 将其分成两类:4PSK 和(2PSK、2ASK、4ASK);
④对于判别类属于(2PSK、2ASK、4ASK)的信号,计算待识别信号的零中心非弱信号段瞬时相位非线性分量的标准偏差,与门限比较,将其分成两类:2PSK和(2ASK、4ASK)。
⑤对于判别类属于(2ASK、4ASK)的信号,计算待识别信号的零中心归一化瞬时幅度绝对值的标准偏差,与门限比较,将其分成两类:2ASK和4ASK。
数字调制信号
2ASK
4ASK
2FSK
2PSK
4FSK
4PSK
Y
N
Y
Y
Y
Y
N
N
N
N
图4.2 基于决策论的数字调制信号识别
(2)特征门限值的确定
对基于决策理论的调制识别算法,每个特征参数都是用来区分两个信号子集A 、B的,且判决规则如下:
(4-19)
即当信号特征值大于门限值时,判为子集中的信号,当小于门限值时, 则判为子集中的信号。选择的最佳门限值的准则是使下面的平均概率最大(趋近于1):
(4-20)
式中,为在已知是子集中的信号的条件下,用门限判决是子集的正确概率;为在已知是子集中的信号的条件下,用门限判决是的正确概率。
4.3调制信号识别中应注意的问题
前面对基于决策理论的信号调制样式识别算法进行了具体的说明,在实现这些算法时会碰到许多具体的实际问题,例如采样速率的选取、非弱信号段的实际选取等。下面就这些问题作一简单讨论。
(1)采样速率的选取
根据Nyquist采样定理,采样速率只要满足:(为最高信号频率)即可。如果采用带通采样,则有:(其中为信号带宽)。采样频率的这种选取原则主要是从保留信息内容,避免频谱折叠角度去考虑的。而从调制样式自动识别的角度来考虑,采样频率的选取一般要求尽可能地选高一些,例如取,其中 为载波频率(中心频率)。这样选取的理由主要有以下几点:一是信号的最高频率或带宽有时往往是不确知的,尤其是在非合作通信侦收场合;二是在采用过零检测载频估计算法中,也要求采用过采样,否则会影响估计精度;三是为了用Hilbert变换实现从实信号到复解析信号的变换处理,也要求采用过采样;四是当采用模计算瞬时相位时,为了确保相位非模糊,两个采样点之间相位差应不大于,这也就要求。 以上四点总的来看要求采样频率尽可能地选高一些,所以按来选取采样频率是比较合适的。
(2)非线性相位分量的计算
一个实际信号的瞬时相位将由式(4-21)给出:
(4-21)
式中,是收发双方的载频误差,是反映调制信息的非线性相位分量,由于载频误差以及实际相位计算时是以模来计算的,这就使非线性相位分量的计算复杂化,即如何从有相位折叠的中求出,因为在有相位
展开阅读全文