收藏 分销(赏)

ACM程序设计算法讲解.doc

上传人:xrp****65 文档编号:8712857 上传时间:2025-02-27 格式:DOC 页数:124 大小:1.16MB
下载 相关 举报
ACM程序设计算法讲解.doc_第1页
第1页 / 共124页
ACM程序设计算法讲解.doc_第2页
第2页 / 共124页
点击查看更多>>
资源描述
ACM程序设计算法讲解 目录 1.河内之塔 3 2.Algorithm Gossip: 费式数列 4 3.巴斯卡三角形 5 4.Algorithm Gossip: 三色棋 6 5.Algorithm Gossip: 老鼠走迷官(一) 8 6.Algorithm Gossip: 老鼠走迷官(二) 10 7.Algorithm Gossip: 骑士走棋盘 11 8.Algorithm Gossip: 八皇后 14 9.Algorithm Gossip: 八枚银币 16 10.Algorithm Gossip: 生命游戏 18 11.Algorithm Gossip: 字串核对 21 12.Algorithm Gossip: 双色、三色河内塔 23 13.Algorithm Gossip: 背包问题(Knapsack Problem) 27 14.Algorithm Gossip: 蒙地卡罗法求 PI 32 15.Algorithm Gossip: Eratosthenes筛选求质数 33 16.Algorithm Gossip: 超长整数运算(大数运算) 35 17.Algorithm Gossip: 长 PI 37 18.Algorithm Gossip: 最大公因数、最小公倍数、因式分解 40 19.Algorithm Gossip: 完美数 43 20.Algorithm Gossip: 阿姆斯壮数 46 21.Algorithm Gossip: 最大访客数 48 22.Algorithm Gossip: 中序式转后序式(前序式) 50 23.Algorithm Gossip: 后序式的运算 53 24.Algorithm Gossip: 洗扑克牌(乱数排列) 55 25.Algorithm Gossip: Craps赌博游戏 57 26.Algorithm Gossip: 约瑟夫问题(Josephus Problem) 59 27.Algorithm Gossip: 排列组合 61 28.Algorithm Gossip: 格雷码(Gray Code) 63 29.Algorithm Gossip: 产生可能的集合 65 30.Algorithm Gossip: m元素集合的n个元素子集 68 31.Algorithm Gossip: 数字拆解 70 32.Algorithm Gossip: 得分排行 73 33.Algorithm Gossip: 选择、插入、气泡排序 75 34.Algorithm Gossip: Shell 排序法 - 改良的插入排序 79 35.Algorithm Gossip: Shaker 排序法 - 改良的气泡排序 82 36.排序法 - 改良的选择排序 84 37.Algorithm Gossip: 快速排序法(一) 88 38.Algorithm Gossip: 快速排序法(二) 90 39.Algorithm Gossip: 快速排序法(三) 92 40.Algorithm Gossip: 合并排序法 95 41.Algorithm Gossip: 基数排序法 98 42.Algorithm Gossip: 循序搜寻法(使用卫兵) 100 43.Algorithm Gossip: 二分搜寻法(搜寻原则的代表) 102 44.Algorithm Gossip: 插补搜寻法 105 45.Algorithm Gossip: 费氏搜寻法 108 46.Algorithm Gossip: 稀疏矩阵 112 47.Algorithm Gossip: 多维矩阵转一维矩阵 114 48.Algorithm Gossip: 上三角、下三角、对称矩阵 115 49.Algorithm Gossip: 奇数魔方阵 118 50.Algorithm Gossip: 4N 魔方阵 119 51.Algorithm Gossip: 2(2N+1) 魔方阵 121 1.河内之塔 说明河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。 解法如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。 #include <stdio.h> void hanoi(int n, char A, char B, char C) { if(n == 1) { printf("Move sheet %d from %c to %c\n", n, A, C); } else { hanoi(n-1, A, C, B); printf("Move sheet %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } } int main() { int n; printf("请输入盘数:"); scanf("%d", &n); hanoi(n, 'A', 'B', 'C'); return 0; } 2.Algorithm Gossip: 费式数列 说明 Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:「若有一只免子每个月生一只小免子,一个月后小免子也开始生产。起初只有一只免子,一个月后就有两只免子,二个月后有三只免子,三个月后有五只免子(小免子投入生产)......。 如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例如以下: 1、1 、2、3、5、8、13、21、34、55、89...... 解法 依说明,我们可以将费氏数列定义为以下: fn = fn-1 + fn-2   if n > 1 fn = n       if n = 0, 1 #include <stdio.h> #include <stdlib.h> #define N 20 int main(void) { int Fib[N] = {0}; int i; Fib[0] = 0; Fib[1] = 1; for(i = 2; i < N; i++) Fib[i] = Fib[i-1] + Fib[i-2]; for(i = 0; i < N; i++) printf("%d ", Fib[i]); printf("\n"); return 0; } 3.巴斯卡三角形 #include <stdio.h> #define N 12 long combi(int n, int r){ int i; long p = 1; for(i = 1; i <= r; i++) p = p * (n-i+1) / i; return p; } void paint() { int n, r, t; for(n = 0; n <= N; n++) { for(r = 0; r <= n; r++) { int i;/* 排版设定开始 */ if(r == 0) { for(i = 0; i <= (N-n); i++) printf(" "); }else { printf(" "); } /* 排版设定结束 */ printf("%3d", combi(n, r)); } printf("\n"); } } 4.Algorithm Gossip: 三色棋 说明 三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为Dutch Nation Flag(Dijkstra为荷兰人),而多数的作者则使用Three-Color Flag来称之。 假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。 解法 在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到白色留在中间,遇到红色往后移,如下所示: 只是要让移动次数最少的话,就要有些技巧: 如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。 如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。 如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。 注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;什幺时候移动结束呢?一开始时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗子就都是红色了,此时就可以结束移动,如下所示: #include <stdio.h> #include <stdlib.h> #include <string.h> #define BLUE 'b' #define WHITE 'w' #define RED 'r' #define SWAP(x, y) { char temp; \ temp = color[x]; \ color[x] = color[y]; \ color[y] = temp; } int main() { char color[] = {'r', 'w', 'b', 'w', 'w', 'b', 'r', 'b', 'w', 'r', '\0'}; int wFlag = 0; int bFlag = 0; int rFlag = strlen(color) - 1; int i; for(i = 0; i < strlen(color); i++) printf("%c ", color[i]); printf("\n"); while(wFlag <= rFlag) { if(color[wFlag] == WHITE) wFlag++; else if(color[wFlag] == BLUE) { SWAP(bFlag, wFlag); bFlag++; wFlag++; } else { while(wFlag < rFlag && color[rFlag] == RED) rFlag--; SWAP(rFlag, wFlag); rFlag--; } } for(i = 0; i < strlen(color); i++) printf("%c ", color[i]); printf("\n"); return 0; } 5.Algorithm Gossip: 老鼠走迷官(一) 说明老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表示老鼠的行走路径,试以程式求出由入口至出口的路径。 解法老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前进时退回选择下一个可前进方向,如此在阵列中依序测试四个方向,直到走到出口为止,这是递回的基本题,请直接看程式应就可以理解。 #include <stdio.h> #include <stdlib.h> int visit(int, int); int maze[7][7] = {{2, 2, 2, 2, 2, 2, 2}, {2, 0, 0, 0, 0, 0, 2}, {2, 0, 2, 0, 2, 0, 2}, {2, 0, 0, 2, 0, 2, 2}, {2, 2, 0, 2, 0, 2, 2}, {2, 0, 0, 0, 0, 0, 2}, {2, 2, 2, 2, 2, 2, 2}}; int startI = 1, startJ = 1; // 入口 int endI = 5, endJ = 5; // 出口 int success = 0; int main(void) { int i, j; printf("显示迷宫:\n"); for(i = 0; i < 7; i++) { for(j = 0; j < 7; j++) if(maze[i][j] == 2) printf("█"); else printf(" "); printf("\n"); } if(visit(startI, startJ) == 0) printf("\n没有找到出口!\n"); else { printf("\n显示路径:\n"); for(i = 0; i < 7; i++) { for(j = 0; j < 7; j++) { if(maze[i][j] == 2) printf("█"); else if(maze[i][j] == 1) printf("◇"); else printf(" "); } printf("\n"); } } return 0; } int visit(int i, int j) { maze[i][j] = 1; if(i == endI && j == endJ) success = 1; if(success != 1 && maze[i][j+1] == 0) visit(i, j+1); if(success != 1 && maze[i+1][j] == 0) visit(i+1, j); if(success != 1 && maze[i][j-1] == 0) visit(i, j-1); if(success != 1 && maze[i-1][j] == 0) visit(i-1, j); if(success != 1) maze[i][j] = 0; return success; } 6.Algorithm Gossip: 老鼠走迷官(二) 说明由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢? 解法求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退回上一格重新选择下一个位置继续递回就可以了,比求出单一路径还简单,我们的程式只要作一点修改就可以了。 #include <stdio.h> #include <stdlib.h> void visit(int, int); int maze[9][9] = {{2, 2, 2, 2, 2, 2, 2, 2, 2}, {2, 0, 0, 0, 0, 0, 0, 0, 2}, {2, 0, 2, 2, 0, 2, 2, 0, 2}, {2, 0, 2, 0, 0, 2, 0, 0, 2}, {2, 0, 2, 0, 2, 0, 2, 0, 2}, {2, 0, 0, 0, 0, 0, 2, 0, 2}, {2, 2, 0, 2, 2, 0, 2, 2, 2}, {2, 0, 0, 0, 0, 0, 0, 0, 2}, {2, 2, 2, 2, 2, 2, 2, 2, 2}}; int startI = 1, startJ = 1; // 入口 int endI = 7, endJ = 7; // 出口 int main(void) { int i, j; printf("显示迷宫:\n"); for(i = 0; i < 7; i++) { for(j = 0; j < 7; j++) if(maze[i][j] == 2) printf("█"); else printf(" "); printf("\n"); } visit(startI, startJ); return 0; } void visit(int i, int j) { int m, n; maze[i][j] = 1; if(i == endI && j == endJ) { printf("\n显示路径:\n"); for(m = 0; m < 9; m++) { for(n = 0; n < 9; n++) if(maze[m][n] == 2) printf("█"); else if(maze[m][n] == 1) printf("◇"); else printf(" "); printf("\n"); } } if(maze[i][j+1] == 0) visit(i, j+1); if(maze[i+1][j] == 0) visit(i+1, j); if(maze[i][j-1] == 0) visit(i, j-1); if(maze[i-1][j] == 0) visit(i-1, j); maze[i][j] = 0; } 7.Algorithm Gossip: 骑士走棋盘 说明骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置? 解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。 #include <stdio.h> int board[8][8] = {0}; int main(void) { int startx, starty; int i, j; printf("输入起始点:"); scanf("%d %d", &startx, &starty); if(travel(startx, starty)) { printf("游历完成!\n"); } else { printf("游历失败!\n"); } for(i = 0; i < 8; i++) { for(j = 0; j < 8; j++) { printf("%2d ", board[i][j]); } putchar('\n'); } return 0; } int travel(int x, int y) { // 对应骑士可走的八个方向 int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2}; int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1}; // 测试下一步的出路 int nexti[8] = {0}; int nextj[8] = {0}; // 记录出路的个数 int exists[8] = {0}; int i, j, k, m, l; int tmpi, tmpj; int count, min, tmp; i = x; j = y; board[i][j] = 1; for(m = 2; m <= 64; m++) { for(l = 0; l < 8; l++) exists[l] = 0; l = 0; // 试探八个方向 for(k = 0; k < 8; k++) { tmpi = i + ktmove1[k]; tmpj = j + ktmove2[k]; // 如果是边界了,不可走 if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) continue; // 如果这个方向可走,记录下来 if(board[tmpi][tmpj] == 0) { nexti[l] = tmpi; nextj[l] = tmpj; // 可走的方向加一个 l++; } } count = l; // 如果可走的方向为0个,返回 if(count == 0) { return 0; } else if(count == 1) { // 只有一个可走的方向 // 所以直接是最少出路的方向 min = 0; } else { // 找出下一个位置的出路数 for(l = 0; l < count; l++) { for(k = 0; k < 8; k++) { tmpi = nexti[l] + ktmove1[k]; tmpj = nextj[l] + ktmove2[k]; if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) { continue; } if(board[tmpi][tmpj] == 0) exists[l]++; } } tmp = exists[0]; min = 0; // 从可走的方向中寻找最少出路的方向 for(l = 1; l < count; l++) { if(exists[l] < tmp) { tmp = exists[l]; min = l; } } } // 走最少出路的方向 i = nexti[min]; j = nextj[min]; board[i][j] = m; } return 1; } 8.Algorithm Gossip: 八皇后 说明西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八个皇后如何相安无事的放置在棋盘上,1970年与1971年, E.W.Dijkstra与N.Wirth曾经用这个问题来讲解程式设计之技巧。 解法关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?在八个皇后的问题中,不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方法称为分支修剪。 #include <stdio.h> #include <stdlib.h> #define N 8 int column[N+1]; // 同栏是否有皇后,1表示有 int rup[2*N+1]; // 右上至左下是否有皇后 int lup[2*N+1]; // 左上至右下是否有皇后 int queen[N+1] = {0}; int num; // 解答编号 void backtrack(int); // 递回求解 int main(void) { int i; num = 0; for(i = 1; i <= N; i++) column[i] = 1; for(i = 1; i <= 2*N; i++) rup[i] = lup[i] = 1; backtrack(1); return 0; } void showAnswer() { int x, y; printf("\n解答 %d\n", ++num); for(y = 1; y <= N; y++) { for(x = 1; x <= N; x++) { if(queen[y] == x) { printf(" Q"); } else { printf(" ."); } } printf("\n"); } } void backtrack(int i) { int j; if(i > N) { showAnswer(); } else { for(j = 1; j <= N; j++) { if(column[j] == 1 && rup[i+j] == 1 && lup[i-j+N] == 1) { queen[i] = j; // 设定为占用 column[j] = rup[i+j] = lup[i-j+N] = 0; backtrack(i+1); column[j] = rup[i+j] = lup[i-j+N] = 1; } } } } 9.Algorithm Gossip: 八枚银币 说明现有八枚银币a b c d e f g h,已知其中一枚是假币,其重量不同于真币,但不知是较轻或较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。 解法单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回圈比较来求解,我们可以使用决策树(decision tree),使用分析与树状图来协助求解。一个简单的状况是这样的,我们比较a+b+c与d+e+f ,如果相等,则假币必是g或h,我们先比较g或h哪个较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻而 g是真币,则h假币的重量比真币轻。 #include <stdio.h> #include <stdlib.h> #include <time.h> void compare(int[], int, int, int); void eightcoins(int[]); int main(void) { int coins[8] = {0}; int i; srand(time(NULL)); for(i = 0; i < 8; i++) coins[i] = 10; printf("\n输入假币重量(比10大或小):"); scanf("%d", &i); coins[rand() % 8] = i; eightcoins(coins); printf("\n\n列出所有钱币重量:"); for(i = 0; i < 8; i++) printf("%d ", coins[i]); printf("\n"); return 0; } void compare(int coins[], int i, int j, int k) { if(coins[i] > coins[k]) printf("\n假币 %d 较重", i+1); else printf("\n假币 %d 较轻", j+1); } void eightcoins(int coins[]) { if(coins[0]+coins[1]+coins[2] == coins[3]+coins[4]+coins[5]) { if(coins[6] > coins[7]) compare(coins, 6, 7, 0); else compare(coins, 7, 6, 0); } else if(coins[0]+coins[1]+coins[2] > coins[3]+coins[4]+coins[5]) { if(coins[0]+coins[3] == coins[1]+coins[4]) compare(coins,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服