收藏 分销(赏)

高考数学翻折问题.doc

上传人:仙人****88 文档编号:8661245 上传时间:2025-02-24 格式:DOC 页数:5 大小:659.80KB
下载 相关 举报
高考数学翻折问题.doc_第1页
第1页 / 共5页
高考数学翻折问题.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
高考中的翻折问题 (19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分)    在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求直线A1E与平面A1BP所成角的大小; (Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示) 图1 图2 19本小题主要考查线面垂直、直线和平面所成的角、二面角等基础知识,以及空间线面位置关系的证明、角和距离的计算等,考查空间想象能力、逻辑推理能力和运算能力。 解法一:不妨设正三角形ABC的边长为3 在图1中,取BE中点D,连结DF. AE:EB=CF:FA=1:2∴AF=AD=2而∠A=600 , ∴△ADF是正三角形,又AE=DE=1, ∴EF⊥AD在图2中,A1E⊥EF, BE⊥EF, ∴∠A1EB为二面角A1-EF-B的平面角。由题设条件知此二面角为直二面角,A1E⊥BE,又∴A1E⊥平面BEF,即 A1E⊥平面BEP 在图2中,A1E不垂直A1B, ∴A1E是平面A1BP的垂线,又A1E⊥平面BEP, ∴A1E⊥BE.从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则∠E1AQ就是A1E与平面A1BP所成的角,且BP⊥A1Q.在△EBP中, BE=EP=2而∠EBP=600 , ∴△EBP是等边三角形.又 A1E⊥平面BEP , ∴A1B=A1P, ∴Q为BP的中点,且,又 A1E=1,在Rt△A1EQ中,,∴∠EA1Q=60o, ∴直线A1E与平面A1BP所成的角为600 在图3中,过F作FM⊥ A1P与M,连结QM,QF,∵CP=CF=1, ∠C=600, ∴△FCP是正三角形,∴PF=1.有∴PF=PQ①, ∵A1E⊥平面BEP, ∴A1E=A1Q, ∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②, 由①②及MP为公共边知△FMP≌△QMP, ∴∠QMP=∠FMP=90o,且MF=MQ, 从而∠FMQ为二面角B-A1P-F的平面角. 在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴. ∵ MQ⊥A1P∴∴在△FCQ中,FC=1,QC=2, ∠C=600,由余弦定理得 在△FMQ中, ∴二面角B-A1P-F的大小为 10.把边长为的正方形沿对角线折成直二面角,折成直二面角后,在四点所在的球面上,与两点之间的球面距离为(  ) A. C. B. D. 图6 P E D F B C A 19.(本小题满分14分)如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积. (1)求的表达式; (2)当为何值时,取得最大值? (3)当取得最大值时,求异面直线与所成角的余弦值. (1)由折起的过程可知,PE⊥平面ABC,, V(x)=() (2),所以时, ,V(x)单调递增;时 ,V(x)单调递减;因此x=6时,V(x)取得最大值; (3)过F作MF//AC交AD与M,则,PM=, , 在△PFM中, ,∴异面直线AC与PF所成角的余弦值为; 18.(2007) 如图2,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,,并连结,使得平面平面,,且.连结,如图3. A E B C F D G 18.解:解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,所以平面平面. (II)过点作于点,连结. 由(I)的结论可知,平面, 所以是和平面所成的角. 因为平面平面,平面平面,, 平面,所以平面,故. 因为,,所以可在上取一点,使,又因为,所以四边形是矩形.由题设,,,则.所以,, ,.因为平面,,所以平面,从而.故,. 又,由得. 故.即直线与平面所成的角是. 解法二:(I)因为平面平面,平面平面,, 平面,所以平面,从而.又,所以平面.因为平面,所以平面平面. (II)由(I)可知,平面.故可以为原点,分别以直线为轴、轴、轴建立空间直角坐标系(如图), 由题设,,,则, ,,相关各点的坐标分别是, ,,.所以,. 设是平面的一个法向量, 由得故可取.过点作平面于点,因为,所以,于是点在轴上.因为,所以,. 设(),由,解得, 所以.设和平面所成的角是,则 .故直线与平面所成的角是. 5
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服