资源描述
一次方程(组)及其应用综合复习
知识点回顾
知识点一:一元一次方程的概念及它的解
的方程是一元一次方程。
是方程的解.
例1 已知关于x的方程的解是,则m的值是____________.
【解析】 本题考查了一元一次方程解的意义.因是该方程的解,所以代入后方程仍然成立,即:,解这个关于m的方程得m=2.
【答案】m=2
同步测试:
1.关于x的方程是一元一次方程,则 ,
方程的解是 。
2. 已知 是方程的一个解, 那么的值是( )
A.1 B.3 C. —3 D. —1
知识点二:二元一次方程(组)的概念及方程组的解
例2:若关于x,y的二元一次方程组的解也是二元一次方程 的解,则k的值为
A. (B) (C) (D)
【解析】由方程组得2x=14k,y=-2k.代入,得14k-6k=6,解得k=.
【答案】B
同步测试:
1.已知是二元一次方程组的解,
则的值为( ).
A.1 B.-1 C. 2 D.3
2.已知代数式与是同类项,那么的值分别是( )
A. B. C. D.
知识点三:解方程(组):
一元一次方程的解法(步骤):
二元一次方程组的解法(消元思想) ; .
例4:解方程
例5:解方程组
【解析】把y的系数化成绝对值相同,然后用加减法求解。
【答案】解:由①×2+②得:.把代入①得:.
∴原方程的解为
同步测试:
1.如果,则“”内应填的实数是( ).
A. B. C. D.
2.二元一次方程组的解是__________.
知识点四:方程(组)的应用
列方程解决实际问题的一般步骤:
例6:一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
【解析】路程上可以提出的问题是:普通公路和高速公路各为多少千米?在时间上可以提出问题:汽车在普通公路和高速公路上各行驶了多少小时?
【答案】本题答案不惟一,下列解法供参考.
解法一:问题:普通公路和高速公路各为多少千米?
解:设普通公路长为km,高度公路长为km.根据题意,得
解得答:普通公路长为60km,高速公路长为120km.
解法二:问题:汽车在普通公路和高速公路上各行驶了多少小时?
解:设汽车在普通公路上行驶了h,高速公路上行驶了h.
根据题意,得解得
答:汽车在普通公路上行驶了1h,高速公路上行驶了1.2h.
同步测试:
1. 种饮料种饮料单价少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花了13元,如果设种饮料单价为元/瓶,那么下面所列方程正确的是( )
A. B.
C. D.
2. 2015年5月2日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1726.13元钱,那么他购买这台冰箱节省了________元钱.
3.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.
(1)求每支钢笔和每本笔记本的价格;
(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.
知识点五: 二元一次方程组与函数的综合
例7孔明同学在解方程组的过程中,错把看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线过点(3,1),则的正确值应该是 .
【解析】本题考查了一元二次方程组解的意义,及一次函数的相关知识.由题意知,所以,因为直线过点(3,1),则1=12+b,所以b=-11.
【答案】
同步检测:
1.以方程组的解为坐标的点在平面直角坐标系中的位置是( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.如图,直线:与直线:相交于点.
(1)求的值;
(2)不解关于的方程组请你直接写出它的解;
(3)直线:是否也经过点?请说明理由.
历届中考试题:
1.把方程去分母正确的是( )
A.
B.
C.
D.
2.二元一次方程组的解是( )
A. B. C. D.
【答案】解:由①×2+②得:.把代入①得:.
∴原方程的解为
同步测试:
1.如果,则“”内应填的实数是( ).
A. B. C. D.
2.二元一次方程组的解是__________.
课堂总结
展开阅读全文