收藏 分销(赏)

数列极限的几种求法.doc

上传人:可**** 文档编号:847913 上传时间:2024-03-29 格式:DOC 页数:4 大小:226.50KB
下载 相关 举报
数列极限的几种求法.doc_第1页
第1页 / 共4页
数列极限的几种求法.doc_第2页
第2页 / 共4页
数列极限的几种求法.doc_第3页
第3页 / 共4页
数列极限的几种求法.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、数列极限的几种求法 一、定义法:数列极限的定义如下:设是一个数列,若存在确定的数a,对0 N0使当nN时,都有0n+1=0 取 则当时,有 =1二、单调有界法:首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。证明:不妨设为有上界的递增数列。由确界原理,数列有上界,记为。以下证明a就是的极限。事实上,0,按上确界的定义,存在数列中某一项,使得 又由的递增性,当时有 ,这就证得 。同理可证有下界的递减数列必有极限,且其极限即为它的下确界。例2、证明数列收敛,并求其极限。证:,易见数列是递增的。现用数学归纳法来证明有上界。显然 。假设,则有,从而对一切n 有,即有上界。由单

2、调有界定理,数列有极限,记为a 。由于 ,对上式两边取极限得 ,即有 (a+1)(a-2)=0,解得 a=-1或a=2由数列极限的保不等式性,a=-1是不可能的,故有 三、运用两边夹法:迫敛法:(两边夹法)设收敛数列,都以a为极限,数列满足:存在正数当时有 (1) 则数列收敛且证: 由 分别存在正数与使得 当时有 (2) 当时有 (3)取 则当时不等式(1),(2),(3)同时成立即有 从而有 即证所得结果。 例3、求解: (1)=1由(1)式及两边夹法则 =1 。四、先求和再求极限:例4、求极限解: 五、先用放缩法再求极限:例5、求极限 解:记 则又由两边夹法则 =六、用施笃兹公式:首先我们介绍并证明施笃兹公式:施笃兹公式(stolz):设数列单调递增趋向于, (1)(可以为无穷)则例6、设 求: 解:由施笃兹公式

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服