收藏 分销(赏)

数列通项公式求法大全配练习及答案.doc

上传人:可**** 文档编号:846367 上传时间:2024-03-29 格式:DOC 页数:8 大小:550.04KB
下载 相关 举报
数列通项公式求法大全配练习及答案.doc_第1页
第1页 / 共8页
数列通项公式求法大全配练习及答案.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述
数列通项公式的十种求法 一、公式法 二、累加法 例 1 已知数列满足,求数列的通项公式。 例2 已知数列满足,求数列的通项公式。() 三、累乘法 例3 已知数列满足,求数列的通项公式。 () 评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。 例4已知数列满足,求的通项公式。() 评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。 四、待定系数法 (其中p,q均为常数)。 例5 已知数列满足,求数列的通项公式。() 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 例6 已知数列满足,求数列的通项公式。 () 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。 例7 已知数列满足,求数列的通项公式。 () 评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 五、递推公式为与的关系式(或) 解法:这种类型一般利用 例8已知数列前n项和.(1)求与的关系;(2)求通项公 式. 六 例9已知数列满足,求数列的通项公式。 解:两边除以,得, 则,故 因此, 则 评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。 七、对数变换法 (当通项公式中含幂指数时适用) 例10 已知数列满足,,求数列的通项公式。 解:因为,所以。在式两边取常用对数得 ⑩ 设 将⑩式代入式,得,两边消去并整理,得,则 ,故 代入式,得 由及式, 得, 则, 所以数列是以为首项,以5为公比的等比数列,则,因此 则。 评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。 八、迭代法 例11 已知数列满足,求数列的通项公式。 解:因为,所以 又,所以数列的通项公式为。 评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。 九、数学归纳法 例12 已知数列满足,求数列的通项公式。 解:由及,得 由此可猜测,往下用数学归纳法证明这个结论。 (1)当时,,所以等式成立。 (2)假设当时等式成立,即,则当时, 由此可知,当时等式也成立。 根据(1),(2)可知,等式对任何都成立。 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。 十、换元法 例13 已知数列满足,求数列的通项公式。 解:令,则 故,代入得 即 因为,故 则,即, 可化为, 所以是以为首项,以为公比的等比数列,因此,则,即,得 。 评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服